
高等数学求微分方程y'+y=0在初始条件y(0)=1下的特解 50
2017-10-14
展开全部
一阶线性微分方程,直接套公式。显然P=1/x,Q=e^x,那么:
∫Pdx=lnx
-∫Pdx=-lnx
∫Q[e^(lnx)]dx=∫x(e^x)dx=(x-1)(e^x)
得到方程的通解:
y=[e^(-lnx)][(x-1)(e^x)+C]=[1-(1/x)](e^x)+(C/x)…………C为任意常数
代入y(1)=0,得到:
0=0+C
所以C=0
方程的特解为:y=[1-(1/x)](e^x)
∫Pdx=lnx
-∫Pdx=-lnx
∫Q[e^(lnx)]dx=∫x(e^x)dx=(x-1)(e^x)
得到方程的通解:
y=[e^(-lnx)][(x-1)(e^x)+C]=[1-(1/x)](e^x)+(C/x)…………C为任意常数
代入y(1)=0,得到:
0=0+C
所以C=0
方程的特解为:y=[1-(1/x)](e^x)

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询