展开全部
解答:
dx : 是x的无穷小的增量;
dy : 是y的无穷小的增量;
dy/dx:是y对x的导数,是dy对dx的微分的商,简称微商。
意义:随着x的无穷小增量,引起y无穷小的增量,这两个增量的比率。
也就是,y随x的无穷小变化所导致的相对变化率、牵连变化率。
几何意义:在原函数上任意一点x处的切线的斜率。
y' : 国内的教学,对y'一往情深,对dy/dx弃如敝屣。
这样完全一边倒的教学法,就葬送了许多学生对微积分的基本悟性。
y'唯一的好处就是书写简便,它埋葬了微商的特性,尤其是解微分方程的直觉。
y'×dx:就是微分,y'在定义上是dy/dx,在表达形式上是一个函数y',
y'×dx就是表示由于x的增量导致的y的增量的大小。
也就是(dy/dx)dx, 在形式上是f'(x)dx, 在意义上是dy,
这就是导数公式与微分公式的关系。
dx : 是x的无穷小的增量;
dy : 是y的无穷小的增量;
dy/dx:是y对x的导数,是dy对dx的微分的商,简称微商。
意义:随着x的无穷小增量,引起y无穷小的增量,这两个增量的比率。
也就是,y随x的无穷小变化所导致的相对变化率、牵连变化率。
几何意义:在原函数上任意一点x处的切线的斜率。
y' : 国内的教学,对y'一往情深,对dy/dx弃如敝屣。
这样完全一边倒的教学法,就葬送了许多学生对微积分的基本悟性。
y'唯一的好处就是书写简便,它埋葬了微商的特性,尤其是解微分方程的直觉。
y'×dx:就是微分,y'在定义上是dy/dx,在表达形式上是一个函数y',
y'×dx就是表示由于x的增量导致的y的增量的大小。
也就是(dy/dx)dx, 在形式上是f'(x)dx, 在意义上是dy,
这就是导数公式与微分公式的关系。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-12-30 广告
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询