2个回答
展开全部
已知A+B+C=π
所以,B+C=π-A
令y=cosA+cos[(B+C)/2]=cosA+cos[(π-A)/2]=cosA+sin(A/2)
=1-2sin^2 (A/2)+sin(A/2)
令sin(A/2)=t,则t∈(0,1)
所以,y=-2t^2+t+1=-2[t^2-(t/2)+(1/16)]+(1/8)+1
=-2*[t-(1/4)]^2+(9/8)
所以,当t=1/4∈(0,1)时,y有最大值9/8
此时,sin(A/2)=t=1/4
===> A/2=arcsin(1/4)
===> A=2arcsin(1/4)
或者,A=π-2arcsin(1/4).
所以,B+C=π-A
令y=cosA+cos[(B+C)/2]=cosA+cos[(π-A)/2]=cosA+sin(A/2)
=1-2sin^2 (A/2)+sin(A/2)
令sin(A/2)=t,则t∈(0,1)
所以,y=-2t^2+t+1=-2[t^2-(t/2)+(1/16)]+(1/8)+1
=-2*[t-(1/4)]^2+(9/8)
所以,当t=1/4∈(0,1)时,y有最大值9/8
此时,sin(A/2)=t=1/4
===> A/2=arcsin(1/4)
===> A=2arcsin(1/4)
或者,A=π-2arcsin(1/4).
更多追问追答
追问
为什么cos[(π-A)/2]=sin(A/2)?公式是什么
追答
如果α+β=90°,则sinα=cosβ
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询