如图①,在等边三角形ABC中,点E在直线AB上,点D在直线CB上,且ED=EC.试确定线段AE与

(1)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果)只需要回答第二问第一问我会做的... (1)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果)只需要回答第二问 第一问我会做的
注意:我们老师要求第二问是作EF∥BC,交AC于点F的 有两种情况 分别是CD=1 CD=3 都是这样做的
展开
 我来答
吃饼干
推荐于2017-11-25 · TA获得超过161个赞
知道答主
回答量:13
采纳率:0%
帮助的人:11.8万
展开全部
解:(1)答案为:=.

(2)答案为:=.
证明:在等边△ABC中,∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠AFE=60°=∠BAC,
∴AE=AF=EF,
∴AB-AE=AC-AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED=60°,
∠ACB=∠ECB+∠FCE=60°,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,


ED=EC
∠DEB=∠DCF
EB=FC

∴△DBE≌△EFC(SAS),
∴DB=EF,
∴AE=BD.

(3)∵AB=1,AE=2,
∴B是AE的中点,△ABC是等边三角形
∴AB=AC=BC=1,△ACE是直角三角形
∴∠ACE是直角(根据直角三角斜边的中线等于斜边的一半)
∴∠D=∠ECB=30°,∠DBE=∠ABC=60°,即△DEB是直角三角形.
∴BD=2(30°所对的边等于斜边的一半),即CD=1+2=3.
∵AE=BD=2,BC=1,
∴CD=2-1=1,
答:CD的长是1或3.

(1)根据等边三角形的性质和三角形的内角和定理求出∠D=∠ECB=30°,∠ABC=60°,求出∠D=∠DEB=30°,推出DB=BE=AE即可得到答案;
(2)作EF∥BC,证出等边三角形AEF,再证△DBE≌△EFC即可得到答案;
(3)分为两种情况:一是E在AB的延长线上,D在线段CB的延长线上,求出CD=3,二是E在BA的延长线上,D在线段BC的延长线上,求出CD=1,即可得到答案.

足够详细了吧。。。
百度网友5793aa894b
2013-07-15 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1.4万
采纳率:45%
帮助的人:1亿
展开全部
视频答案|(2011,浙江绍兴)数学课上,李老师出示了如下题目:在等边三角形ABC(如图)中,点E在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系,并说明理由.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图,确定线段AE...
http://www.vtigu.com/question_8_106_16722_1_28_0_50113230.htm
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式