三角形ABC中,a=c*sinA,求a+b/c的最大值

请写详细点我是刚学这东西的... 请写详细点 我是刚学这东西的 展开
yuyou403
2013-07-18 · TA获得超过6.4万个赞
知道顶级答主
回答量:2.2万
采纳率:95%
帮助的人:1亿
展开全部
答:
根据正弦定理:a/sinA=b/sinB=c/sinC=2R
代入a=csinA得:
sinA=sinCsinA>0
所以:sinC=1
所以:C=90°
所以:a²+b²=c²
所以:
(a+b)/c
=(a+b)/√(a²+b²)
=√[(a²+2ab+b²)/(a²+b²)]
=√[1+2ab/(a²+b²)] 利用基本不等式(均值不等式)
<=√(1+1)=√2
所以:(a+b)/c的最大值为√2
此时三角形为等腰直角三角形
泪笑2998
2013-07-18 · TA获得超过4.8万个赞
知道大有可为答主
回答量:7787
采纳率:83%
帮助的人:4015万
展开全部
由正弦定理知:
a/sinA=c/sinC
∵a=c*sinA
∴a/sinA=c=c/sinC
∴sinC=1∴C=π/2
∴a²+b²=c²
由基本不等式知:(a+b)/2≤√[(a²+b²)/2]=√2c/2
∴a+b≤√2c
∴a+b/c≤√2c/c=√2
∴a+b/c的最大值=√2

这是我在静心思考后得出的结论,
如果能帮助到您,希望您不吝赐我一采纳~(满意回答)
如果不能请追问,我会尽全力帮您解决的~
答题不易,如果您有所不满愿意,请谅解~
追问
由基本不等式知:(a+b)/2≤√[(a²+b²)/2]=√2c/2
请把这个写详细
追答
(a+b)/2≤√[(a²+b²)/2]这就是基本不等式
C=π/2∴a²+b²=c²
所以√[(a²+b²)/2]=√2c/2
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式