
求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
1个回答
展开全部
(2n)^2/(2n-1)(2n+1)
=(2n)^2/[(2n)²-1]
=1+1/[(2n)²-1]
=1+1/(2n-1)(2n+1)
=1+1/2[1/(2n-1)-1/(2n+1)]
∴Sn=2^2/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
=n+1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=n+1/2[1-1/(2n+1)]
=n+n/(2n+1)
这是我在静心思考后得出的结论,
如果能帮助到您,希望您不吝赐我一采纳~(满意回答)
如果不能请追问,我会尽全力帮您解决的~
答题不易,如果您有所不满愿意,请谅解~
=(2n)^2/[(2n)²-1]
=1+1/[(2n)²-1]
=1+1/(2n-1)(2n+1)
=1+1/2[1/(2n-1)-1/(2n+1)]
∴Sn=2^2/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
=n+1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=n+1/2[1-1/(2n+1)]
=n+n/(2n+1)
这是我在静心思考后得出的结论,
如果能帮助到您,希望您不吝赐我一采纳~(满意回答)
如果不能请追问,我会尽全力帮您解决的~
答题不易,如果您有所不满愿意,请谅解~
更多追问追答
追问
∴Sn=2^2/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
=n+1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]为啥1/2前面的东西加起来是n,能详细解答下吗,后面过程都懂了
追答
1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=1/2×2n/(2n+1)
=n/(2n+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询