求和:Sn=2^/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)

泪笑2998
2013-07-18 · TA获得超过4.8万个赞
知道大有可为答主
回答量:7787
采纳率:83%
帮助的人:4908万
展开全部
(2n)^2/(2n-1)(2n+1)
=(2n)^2/[(2n)²-1]
=1+1/[(2n)²-1]
=1+1/(2n-1)(2n+1)
=1+1/2[1/(2n-1)-1/(2n+1)]
∴Sn=2^2/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
=n+1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=n+1/2[1-1/(2n+1)]
=n+n/(2n+1)

这是我在静心思考后得出的结论,
如果能帮助到您,希望您不吝赐我一采纳~(满意回答)
如果不能请追问,我会尽全力帮您解决的~
答题不易,如果您有所不满愿意,请谅解~
更多追问追答
追问
∴Sn=2^2/1*3+4^2/3*5+……(2n)^2/(2n-1)(2n+1)
=n+1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]为啥1/2前面的东西加起来是n,能详细解答下吗,后面过程都懂了
追答
1/2[1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)]
=1/2[1-1/(2n+1)]
=1/2×2n/(2n+1)
=n/(2n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式