设定义域为R的函数f(x)=a(x=1),f(x)=1+(1/2)^(|x-1|)(x≠1),若关于
设定义域为R的函数f(x)=a(x=1),f(x)=1+(1/2)^(|x-1|)(x≠1),若关于x的方程2f^2(x)-(2a+3)f(x)+3a=0有五个不同的实数...
设定义域为R的函数f(x)=a(x=1),f(x)=1+(1/2)^(|x-1|)(x≠1),若关于x的方程2f^2(x)-(2a+3)f(x)+3a=0有五个不同的实数解,则a的取值范围?(过程写的详细点 谢谢)
展开
展开全部
方程2f2(x)-(2a+3)f(x)+3a=0有五个不同的实数解x,即要求f(x)=常数有3个不同的f(x),根据题意,先做出函数f(x)的图象,结合图象可知,只有当f(x)=a时,有3个根,再结合方程2f2(x)-(2a+3)f(x)+3a=0有2个不同的实数解,可求
解:∵题中原方程2f2(x)-(2a+3)f(x)+3a=0有且只有5个不同实数解,
∴即要求对应于f(x)等于某个常数有3个不同实数解,
∴故先根据题意作出f(x)的简图:
由图可知,只有当f(x)=a时,它有三个根.
所以有:1<a<2 ①.
再根据2f2(x)-(2a+3)f(x)+3a=0有两个不等实根,
得:△=(2a+3)2-4×2×3a>0⇒a≠3/2 ②
结合①②得:1<a<3/2 或 3/2<a<2.
故答案为:1<a<3/2 或 3/2<a<2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询