![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
设f(x)=(m-2)x²-3mx+1(x∈R)为偶函数,那么它的单调增加区间为?
展开全部
答:
f(x)=(m-2)x²-3mx+1是偶函数,则:f(-x)=f(x)
所以:
f(-x)=(m-2)x²+3mx+1=f(x)
所以:
(m-2)x²+3mx+1=(m-2)x²-3mx+1
所以:6mx=0对任意x都成立
所以:m=0
所以:f(x)=-2x²+1
所以:f(x)的单调增区间为(-∞,0]
f(x)=(m-2)x²-3mx+1是偶函数,则:f(-x)=f(x)
所以:
f(-x)=(m-2)x²+3mx+1=f(x)
所以:
(m-2)x²+3mx+1=(m-2)x²-3mx+1
所以:6mx=0对任意x都成立
所以:m=0
所以:f(x)=-2x²+1
所以:f(x)的单调增区间为(-∞,0]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询