在等差数列{a}中前n项和为Sn,若Sm=p,Sp=m则Sm+p=-(m+P)如何证明
2个回答
2013-07-29 · 知道合伙人教育行家
无脚鸟╰(⇀‸↼)╯
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:6742
获赞数:132166
现在为上海海事大学学生,在学习上有一定的经验,擅长数学。
向TA提问 私信TA
关注
展开全部
证明:由数列为等差数列,可设其前n项和Sn=An^2+Bn
Sm=Am^2+Bm=p, (1)
Sp=Ap^2+Bp=m (2)
(1)+(2)得A(m^2+p^2)+B(m+p)=m+p
p* (1) -m*(2) 整理得 mpA=-(m+p)
所以Sm+p =A(m+p)^2 +B(m+p)
=A(m^2+2mp+p^2)+B(m+p)
=A(m^2+p^2)+B(m+p)+2mpA
=m+p-2(m+p)
=-(m+p)
Sm=Am^2+Bm=p, (1)
Sp=Ap^2+Bp=m (2)
(1)+(2)得A(m^2+p^2)+B(m+p)=m+p
p* (1) -m*(2) 整理得 mpA=-(m+p)
所以Sm+p =A(m+p)^2 +B(m+p)
=A(m^2+2mp+p^2)+B(m+p)
=A(m^2+p^2)+B(m+p)+2mpA
=m+p-2(m+p)
=-(m+p)
展开全部
证:
设公差为d
Sm=Sp
ma1+m(m-1)d/2=pa1+p(p-1)d/2
(m-p)a1+[m(m-1)-p(p-1)]d/2=0
(m-p)a1+[(m²-p²)-(m-p)]d/2=0
(m-p)a1+[(m+p)(m-p)-(m-p)]d/2=0
(m-p)a1+(m-p)(m+p-1)d/2=0
m≠p,等式两边同乘以(m+p)/(m-p)
(m+p)a1+(m+p)(m+p-1)d/2=0
S(m+p)=(m+p)a1+(m+p)(m+p-1)d/2=0
设公差为d
Sm=Sp
ma1+m(m-1)d/2=pa1+p(p-1)d/2
(m-p)a1+[m(m-1)-p(p-1)]d/2=0
(m-p)a1+[(m²-p²)-(m-p)]d/2=0
(m-p)a1+[(m+p)(m-p)-(m-p)]d/2=0
(m-p)a1+(m-p)(m+p-1)d/2=0
m≠p,等式两边同乘以(m+p)/(m-p)
(m+p)a1+(m+p)(m+p-1)d/2=0
S(m+p)=(m+p)a1+(m+p)(m+p-1)d/2=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询