一道数学题,求答案

tyq1997
2013-07-31 · TA获得超过11.1万个赞
知道大有可为答主
回答量:2.4万
采纳率:94%
帮助的人:2946万
展开全部
庞涓能确定孙膑肯定不知道这两个数,可以有这样几个推论。

(A)庞涓手上的数字是5-197之间的数字。

(B)庞涓的和数一定不能拆成两个质数之和,否则就不会有确信。
这可以分解为两点: 庞涓手上不是偶数,只可能是奇数,因为任意大于4偶数能被拆成两个奇质数之和,这是由歌德巴赫猜想来保证; 并且庞涓手上的奇数不是2+质数。

(C)庞涓的和数一定不是大于53的奇数。因为大于53的奇数始终能够拆成偶数和53(是质数)的乘积, 这个乘积只能唯一的推断出53和该偶数的乘积,否则就要大于99了。另外97是质数。
同理应该排除97+2到97+98的所有奇数。
最后剩下的是99+98的奇数,因为都是最大的数,孙膑本来就可以推理出来,与孙膑本来不知道的前提相矛盾,自然排除了。
因此由此可以排除超过53以上的所有奇数。

(D)满足以上条件的这样的数字仅有10个:11,17,23,27,29,35,37,47,51,53。

2、孙膑知道自己手中的积,并说本来不知道,但现在知道了。意味着, 孙膑看了自己手上的积后分解因式对应的所有组合的和,只可能是上述10个数中的一个。
也就是10个和数拆开的乘积不于其他和数拆开乘积重合的才可能是孙膑的积。
这种积有许多种,关键是庞涓的第三句话。

3、庞涓是知道自己手中的和数,当孙膑说了这句话的时候,庞涓说也知道这两个数字了, 那庞涓手上的和数有一个特点,就是除一个例外的可能积,其他可能的积都无法满足前面所言, 否则庞涓没有这种自信。
也就是在10个和数中找出积的数组合中只有唯一一对数可以满足前面的条件。
这时需要结合第二个条件,怎么利用这个条件呢?
以17做为例子: 假设分解为3+14,那么积为52,而42=3*14=2*21=6*7,对应的和有17,23,13 而当中的17和23均为候选解,也就是说假如孙膑手上的数是42,他就无法知道正确的分解, 所以17不能分解为3+14。
类似地可以构造以下这个可以满足第二条件的分解列表:
11的可能的分解:(4,7),(3,8),(2,9),
17的可能的分解:(4,13),
23的可能的分解:(10,13),(7,16),(4,19),
27的可能的分解:(13,14),(11,16),(10,17),(9,18),(8,19),(7,20),(5,22),(4,23),(2,25),
29的可能的分解:(13,16),(12,17),(11,18),(10,19),(8,21),(7,22),(6,23),(4,25),(2,27),
35的可能的分解:(17,18),(16,19),(14,21),(12,23),(10,25),(9,26),(8,27),(6,29),(4,31),(3,32),
37的可能的分解:(17,20),(16,21),(10,27),(9,28),(8,29),(6,31),(5,32),
41的可能的分解:(19,22),(18,23),(17,24),(16,25),(15,26),(14,27),(13,28),(12,29),(10,31), (9,32),(7,34),(4,37),(3,38),
47的可能的分解:(23,24),(22,25),(20,27),(19,28),(18,29),(17,30),(16,31),(15,32),(13,34), (10,37),(7,40),(6,41),(4,43),
53的可能的分解:(26,27),(25,28),(24,29),(23,30),(22,31),(21,32),(20,33),(19,34),(18,35), (17,36),(16,37),(15,38),(13,40),(12,41),(10,43),(8,45),(6,47),(5,48),
当中只有17有唯一可行的分解,所以庞涓才可能确定自己手上的数。

所以本问题的答案为4,13
翖回
2013-07-31
知道答主
回答量:10
采纳率:0%
帮助的人:6.1万
展开全部
是3和5,因为孙膑知道积就知道那两个数字,所以那两个数都是质数。而庞涓知道和,且知道两个数都是质数,就能推出。所以那两个数字是3和5。
孙膑知道的积是15,只能是3和5
庞涓知道的和是8,可以是2,6或3,5。但如果是2,6的话,孙膑的积就是12,就无法知道那两个数具体是什么了。
4和13就不可能了。那样的话孙膑的积是52,可以是4x13或2x26,所以孙膑不可能知道那两个数是什么。
所以答案是3和5。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式