1个回答
展开全部
解
f(x)=2sin²x+2sinxcosx
=2sinxcosx-(1-2sin²x)+1
=sin2x-cos2x+1
=√2(√2/2sin2x-√2/2cos2x)+1
=√2(sin2xcosπ/4-cos2xsinπ/4)+1
=√2sin(2x-π/4)+1
∴最小正周期为:T=2π/2=π
∵sin(2x-π/4)∈[-1.1]
∴当sin(2x-π/4)=1时
f(x)取得最大值为:√2+1
∴对应的x的值为:
2x-π/4=π/2+2kπ
∴x=3π/8+kπ(k∈z)
f(x)=2sin²x+2sinxcosx
=2sinxcosx-(1-2sin²x)+1
=sin2x-cos2x+1
=√2(√2/2sin2x-√2/2cos2x)+1
=√2(sin2xcosπ/4-cos2xsinπ/4)+1
=√2sin(2x-π/4)+1
∴最小正周期为:T=2π/2=π
∵sin(2x-π/4)∈[-1.1]
∴当sin(2x-π/4)=1时
f(x)取得最大值为:√2+1
∴对应的x的值为:
2x-π/4=π/2+2kπ
∴x=3π/8+kπ(k∈z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询