设s,t分别满足19s的平方+99s+1=0,t的平方+99t+19=0且st不等于1,,求st+4s+1/t的值

 我来答
匿名用户
2013-08-10
展开全部
因为:t^2+99t+19=0 ,两边同时除以t^2,得
所以:19*(1/t)^2+99*(1/t)+1=0,
又因为:19s^2+99s+1=0,且s≠1/t,
所以有:s和1/t是一元二次方程:19x^2+99x+1=0的两根。
则:s+1/t=-99/19,s*1/t=1/19
而:(st+4s+1)/t=s+1/t+4*s/t=-99/19+4*1/19=-5
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式