在△ABC中,内角A,B,C的对边分别是a,b,c,且a²+b²+√2ab=c². (1)求C (2)设cosAcosB=3√2/5,
1个回答
展开全部
解:(1)由余弦定理cosC=(a^2+b^2-C^2)/2ab=-√2/2,C=3π/4,
(2)cosAcosB-sinAsinB=cos(A+B)=cosC=√2/2
sinAsinB= √2/10,
(cosαcosA-sinαsinA)(cosαcosB-sinαsinB)/cos^2α=(cosA-sinAtanα)(cosB-sinBtanα)
=cosAcosB-(sinAcosB+cosAsinB)tanα+sinAsinBtan^2α
即3√2/5-√2/2tanα+√2/10tan^2α=√2/5
解方程得tanα=1,tanα=4
(2)cosAcosB-sinAsinB=cos(A+B)=cosC=√2/2
sinAsinB= √2/10,
(cosαcosA-sinαsinA)(cosαcosB-sinαsinB)/cos^2α=(cosA-sinAtanα)(cosB-sinBtanα)
=cosAcosB-(sinAcosB+cosAsinB)tanα+sinAsinBtan^2α
即3√2/5-√2/2tanα+√2/10tan^2α=√2/5
解方程得tanα=1,tanα=4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询