1个回答
展开全部
双曲线右焦点为抛物线y^2=4√5x的焦点(√5,0),
∴a^2+b^2=c^2=5,
∴设双曲线的标准方程是x^2/a^2-y^2/(5-a^2)=1,
其渐近线x/a土y/√(5-a^2)=0和圆C:(x-1)^2+y^2=1/5相切,
∴圆心C(1,0)到渐近线的距离=(1/a)/√[1/a^2+1/(5-a^2)]=1/√5,
平方,求倒数得1+a^2/(5-a^2)=5,
a^2=4(5-a^2),a^2=4,
∴双曲线的标准方程是x^2/4-y^2=1.
∴a^2+b^2=c^2=5,
∴设双曲线的标准方程是x^2/a^2-y^2/(5-a^2)=1,
其渐近线x/a土y/√(5-a^2)=0和圆C:(x-1)^2+y^2=1/5相切,
∴圆心C(1,0)到渐近线的距离=(1/a)/√[1/a^2+1/(5-a^2)]=1/√5,
平方,求倒数得1+a^2/(5-a^2)=5,
a^2=4(5-a^2),a^2=4,
∴双曲线的标准方程是x^2/4-y^2=1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询