过程要详细,谢谢!
1个回答
展开全部
解:(1)由折叠的性质可得:△MBN≌△MPN;
∵△MBN≌△MPN,
∴MB=MP,
∴MB2=MP2,
∵四边形ABCD是矩形,
∴AB=CD,∠A=∠D=90°,
∵AD=3,CD=2,CP=x,AM=y,
∴DP=2-x,MD=3-y,AB=2,
Rt△ABM中,MB2=AM2+AB2=y2+4,
同理:MP2=MD2+PD2=(3-y)2+(2-x)2,
∴y2+4=(3-y)2+(2-x)2,
∴y与x的函数关系式为:y=
x2−4x+9
6
;
(2)∠BMP=90°.
若∠BMP=90°,
则∠AMB+∠DMP=90°,
∵∠A=∠D=90°,
∴∠AMB+∠ABM=90°,
∴∠ABM=∠DMP,
在△ABM和△DMP中,
∠A=∠D
∠ABM=∠DMP
BM=MP
,
∴△ABM≌△DMP(AAS),
∴AM=DP,AB=DM,
∴2=3-y,
解得:y=1,
∴1=2-x,
解得:x=1,
∴当CP=1时,∠BMP=90°.
∵△MBN≌△MPN,
∴MB=MP,
∴MB2=MP2,
∵四边形ABCD是矩形,
∴AB=CD,∠A=∠D=90°,
∵AD=3,CD=2,CP=x,AM=y,
∴DP=2-x,MD=3-y,AB=2,
Rt△ABM中,MB2=AM2+AB2=y2+4,
同理:MP2=MD2+PD2=(3-y)2+(2-x)2,
∴y2+4=(3-y)2+(2-x)2,
∴y与x的函数关系式为:y=
x2−4x+9
6
;
(2)∠BMP=90°.
若∠BMP=90°,
则∠AMB+∠DMP=90°,
∵∠A=∠D=90°,
∴∠AMB+∠ABM=90°,
∴∠ABM=∠DMP,
在△ABM和△DMP中,
∠A=∠D
∠ABM=∠DMP
BM=MP
,
∴△ABM≌△DMP(AAS),
∴AM=DP,AB=DM,
∴2=3-y,
解得:y=1,
∴1=2-x,
解得:x=1,
∴当CP=1时,∠BMP=90°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询