已知cos(x-兀/4)=√2/10,x∈(兀/2,3兀/4) (1)求sinx的值,(2)求sin(2x+兀/3)的值
1个回答
展开全部
cos(x-兀/4)=cos x cos (兀/4)+sin x sin (兀/4)=√2/2 [cos x +sin x]=√2/10
所以 cos x +sin x =1/5 又 cos^2 x +sin^2 x = 1
所以 (1/5 - sin x)^2 + sin^2 x = 1, 所以 2sin^2 x - 2/5 sin x - 24/25 = 0
所以 sin x = - 4/5 (x属于(兀/2,3兀/4), sin x <0 cos x <0 ) cos x = - 3/5
sin2x=2sinxcosx=24/25, cos2x=2cos^2 x -1= - 7/25
sin(2x+兀/3)=sin 2x cos(兀/3) + cos 2x sin(兀/3)=1/2 sin 2x + √3/2 cos 2x
= 1/2 * 24/25 - √3/2 * 7/25 = (24 - 7√3)/50
所以 cos x +sin x =1/5 又 cos^2 x +sin^2 x = 1
所以 (1/5 - sin x)^2 + sin^2 x = 1, 所以 2sin^2 x - 2/5 sin x - 24/25 = 0
所以 sin x = - 4/5 (x属于(兀/2,3兀/4), sin x <0 cos x <0 ) cos x = - 3/5
sin2x=2sinxcosx=24/25, cos2x=2cos^2 x -1= - 7/25
sin(2x+兀/3)=sin 2x cos(兀/3) + cos 2x sin(兀/3)=1/2 sin 2x + √3/2 cos 2x
= 1/2 * 24/25 - √3/2 * 7/25 = (24 - 7√3)/50
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询