已知数列{an}的前n项和Sn=2n(n+1) ①求数列{an}的通项公式
已知数列{an}的前n项和Sn=2n(n+1)①求数列{an}的通项公式②,③见图片:已求出:①an=4n,②bn=2^n谢谢!!!...
已知数列{an}的前n项和Sn=2n(n+1)
①求数列{an}的通项公式
②,③见图片:
已求出:①an=4n,②bn=2^n
谢谢!!! 展开
①求数列{an}的通项公式
②,③见图片:
已求出:①an=4n,②bn=2^n
谢谢!!! 展开
展开全部
(1) s(n) = 2n(n+1),
a(1)=s(1)=2*1*2=4,
a(n+1)=s(n+1)-s(n) = 2(n+1)(n+2)-2n(n+1)=2(n+1)[n+2-n]=4(n+1),
a(n) = 4n.
(2) a[b(n)] = cq^(n-1), b(2) = 4, b(3) = 8.
c = a[b(1)],
cq = a[b(2)] = a(4) = 4*4 = 16.
cq^2 = a[b(3)] = a(8) = 4*8 = 32 ,
q = [cq^2]/(cq) = 32/16 = 2.
c = 16/q = 8.
a[b(n)] = 8*2^(n-1) = 2^(n+2) = 4b(n),
b(n) = 2^n
(3) I[b(n)] = {a(1),a(2),...,a[b(n)]}, A[b(n)] = {a[b(1)], a[b(2)], ..., a[b(n)]},
B[b(n)] = {a(i) | 1 <= i <= b(n), 且 a(i)不是A[b(n)]中的元素。}
I[b(n)] = I[2^n] = {a(1), a(2), ..., a(2^n)} = {4*1,4*2,4*3,..., 4*2^n} = {4i | 1 <= i <= 2^n}
A[b(n)] = A[2^n] = {a[b(1)], a[b(2)], ..., a[b(n)]} = {4b(1), 4b(2),...,4b(n)}
= { 4*2^1, 4*2^2, ..., 4*2^n } = {4*2^i | 1 <= i <= n }
记 I[b(n)]中各元素的和 为 s(n), 则
s(n) = 4[1+2+3+...+2^n] = 4*2^n(2^n + 1) = [2^n + 1]2^(n+2) = 2^(2n+2) + 2^(n+2),
A'[b(n)] = 4[2^1 + 2^2 + ... + 2^n] = 8[1 + 2 + ... + 2^(n-1)] = 8[2^n - 1]/(2-1) = 8[2^n - 1] = 2^(n+3) - 8,
由于B[b(n)]中的元素是从I[b(n)]中剔除掉A[b(n)]中的元素后,所剩余的元素。
因此,
B'[b(n)] = s(n) - A'[b(n)] = 2^(2n+2) + 2^(n+2) - 2^(n+3) + 8 = 8 + 2^(2n+2) - 2^(n+2)
= 8 + 2^(n+2) [2^n - 1]
a(1)=s(1)=2*1*2=4,
a(n+1)=s(n+1)-s(n) = 2(n+1)(n+2)-2n(n+1)=2(n+1)[n+2-n]=4(n+1),
a(n) = 4n.
(2) a[b(n)] = cq^(n-1), b(2) = 4, b(3) = 8.
c = a[b(1)],
cq = a[b(2)] = a(4) = 4*4 = 16.
cq^2 = a[b(3)] = a(8) = 4*8 = 32 ,
q = [cq^2]/(cq) = 32/16 = 2.
c = 16/q = 8.
a[b(n)] = 8*2^(n-1) = 2^(n+2) = 4b(n),
b(n) = 2^n
(3) I[b(n)] = {a(1),a(2),...,a[b(n)]}, A[b(n)] = {a[b(1)], a[b(2)], ..., a[b(n)]},
B[b(n)] = {a(i) | 1 <= i <= b(n), 且 a(i)不是A[b(n)]中的元素。}
I[b(n)] = I[2^n] = {a(1), a(2), ..., a(2^n)} = {4*1,4*2,4*3,..., 4*2^n} = {4i | 1 <= i <= 2^n}
A[b(n)] = A[2^n] = {a[b(1)], a[b(2)], ..., a[b(n)]} = {4b(1), 4b(2),...,4b(n)}
= { 4*2^1, 4*2^2, ..., 4*2^n } = {4*2^i | 1 <= i <= n }
记 I[b(n)]中各元素的和 为 s(n), 则
s(n) = 4[1+2+3+...+2^n] = 4*2^n(2^n + 1) = [2^n + 1]2^(n+2) = 2^(2n+2) + 2^(n+2),
A'[b(n)] = 4[2^1 + 2^2 + ... + 2^n] = 8[1 + 2 + ... + 2^(n-1)] = 8[2^n - 1]/(2-1) = 8[2^n - 1] = 2^(n+3) - 8,
由于B[b(n)]中的元素是从I[b(n)]中剔除掉A[b(n)]中的元素后,所剩余的元素。
因此,
B'[b(n)] = s(n) - A'[b(n)] = 2^(2n+2) + 2^(n+2) - 2^(n+3) + 8 = 8 + 2^(2n+2) - 2^(n+2)
= 8 + 2^(n+2) [2^n - 1]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询