求下列积分,导数和极限!急!给高分!
lim<x→1>arctan(1-x^2)/(2x^2-x-1)=lim<x→1>(1-x^2)/[(2x+1)(x-1)]
=lim<x→1> -(1+x)/[(2x+1)]=-2/3.
令 t=1/x, 则 lim<x→∞>[sin(1/x)+cos(1/x)]^x
=lim<t→0>[sint+cost]^(1/t)
=lim<t→0>{(cost)^(1/t)*[(1+tant)^(1/tant)]^(tant/t
=lim<t→0>{(cost)^(1/t)*e^(tant/t)}=elim<t→0>(cost)^(1/t),
设 y=(cost)^(1/t), 则 lny=lncost/t,
lim<t→0>lny=lim<t→0>lncost/t=lim<t→0>(-sint)/cost=0, 则 lim<t→0>y=1,
原积分是e。
3 (1) lim<x→0>f(x)/x=1, 则 f(0)=0, 由罗必塔法则,
lim<x→0>f(x)/x=lim<x→0>f'(x)/1=1, 则f'(0)=1.
(2) f(x)是奇函数,则 f(0)=0, 由罗必塔法则,
lim<x→0+>f(x)/x=lim<x→0+>f'(x)/1=1, 则f'(0)=1.
4.(1) y=4^(sinx), 则 y'=4^(sinx)(cosx)ln4.
(2) y=(cotx)^2+2ln(sinx), 则 y'=-2cotx(cscx)^2+2cotx=-2(cotx)^2.
5. (1) y=arctanx, 则 y'=1/(1+x^2), y''=-2x/(1+x^2)^2.
(2) y=ln[x+√(1+x^2)], 则 y'=1/√(1+x^2), y''=-x/(1+x^2)^(3/2).
6. (1) 令√(1+x)=t, 则 x=t^2-1,I=∫<0,3>[x/√(1+x)]dx
=2∫<1,2>[(t^2-1)dt=2[t^3/3-t]<1,2>=8/3.
(2) ∫√[arcsinx/(1-x^2)]dx=∫[√arcsinx/√(1-x^2)]dx
=∫√arcsinxdarcsinx=(2/3)(arcsinx)^(3/2)+C.
(3)∫x(arctanx)^2dx=(1/2)∫(arctanx)^2d(x^2)
=(1/2)x^2*(arctanx)^2-∫[x^2*arctanx/(1+x^2)]dx
=(1/2)x^2*(arctanx)^2-∫arctanxdx+∫[arctanx/(1+x^2)]dx
=(1/2)x^2*(arctanx)^2-xarctanx+∫[x/(1+x^2)]dx+∫arctanxd(arctanx)
=(1/2)x^2*(arctanx)^2-xarctanx+(1/2)ln(1+x^2)+(1/2)(arctanx)^2+C.
挖!!谢谢!!第二张图的三道能不能也麻烦一下呢谢谢!!!
2. 不定积分与求导是逆运算,则 [∫f(x)dx]'=f(x)=cosx.
3. 不定积分与微分也是逆运算,则 ∫darcsin√x=arcsin√x+C.
4. .∫f(x)dx=(cosx)^2+C, 两边求导,得 f(x)=2cosx(-sinx)=-sin2x.