
求(e^(x+y)+e^x)dx+(e^(x+y)+e^y)=0的通解
1个回答
展开全部
说明:原题应该是“求(e^(x+y)+e^x)dx+(e^(x+y)+e^y)dy=0的通解”吧!
解:∵(e^(x+y)+e^x)dx+(e^(x+y)+e^y)dy=0
==>e^(x+y)dx+e^xdx+e^(x+y)dy+e^ydy=0
==>e^(x+y)(dx+dy)+e^xdx+e^ydy=0
==>e^(x+y)d(x+y)+e^xdx+e^ydy=0
==>d(e^(x+y))+d(e^x)+d(e^y)=0
==>e^(x+y)+e^x+e^y=C (C是常数)
∴原方程的通解是e^(x+y)+e^x+e^y=C。
解:∵(e^(x+y)+e^x)dx+(e^(x+y)+e^y)dy=0
==>e^(x+y)dx+e^xdx+e^(x+y)dy+e^ydy=0
==>e^(x+y)(dx+dy)+e^xdx+e^ydy=0
==>e^(x+y)d(x+y)+e^xdx+e^ydy=0
==>d(e^(x+y))+d(e^x)+d(e^y)=0
==>e^(x+y)+e^x+e^y=C (C是常数)
∴原方程的通解是e^(x+y)+e^x+e^y=C。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询