如图△ABC内接于圆O,I是△ABC的内心,AI的延长线交圆O于点D.(1)求证:BD=DI;(2)若OI⊥AD,求AB+AC
如图△ABC内接于圆O,I是△ABC的内心,AI的延长线交圆O于点D.(1)求证:BD=DI;(2)若OI⊥AD,求AB+ACBC的值....
如图△ABC内接于圆O,I是△ABC的内心,AI的延长线交圆O于点D.(1)求证:BD=DI;(2)若OI⊥AD,求AB+ACBC的值.
展开
2个回答
展开全部
(1)证明:∵点I是△ABC的内心
∴∠BAD=∠CAD,∠ABI=∠CBI
∵∠CBD=∠CAD
∴∠BAD=∠CBD
∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD,
∵∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD
∴ID=BD;
(2)解:连接OA、OD、BD和BI,
∵OA=OD,OI⊥AD
∴AI=ID,
∵I为△ABC内心,
∴∠BAD=∠BCD,
∴弧BD=弧CD,
∵弧CD=弧CD,
∴∠BCD=∠BAD,
∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI,
=
(∠BAC+∠ACB),
∵∠DIB=∠DAB+∠ABI=
(∠BAC+∠ABC),
∴∠DIB=∠DBI,
∴BD=ID=AI,
=
,
故OD⊥BC,记垂足为E,则有BE=
BC,
作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,
∴Rt△BDE≌Rt△AIG,
于是,AG=BE=
BC,但AG=
(AB+AC-BC),
故AB+AC=2BC,
∴
=2.
∴∠BAD=∠CAD,∠ABI=∠CBI
∵∠CBD=∠CAD
∴∠BAD=∠CBD
∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD,
∵∠IBD=∠CBI+∠CBD,
∴∠BID=∠IBD
∴ID=BD;
(2)解:连接OA、OD、BD和BI,
∵OA=OD,OI⊥AD
∴AI=ID,
∵I为△ABC内心,
∴∠BAD=∠BCD,
∴弧BD=弧CD,
∵弧CD=弧CD,
∴∠BCD=∠BAD,
∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI,
=
1 |
2 |
∵∠DIB=∠DAB+∠ABI=
1 |
2 |
∴∠DIB=∠DBI,
∴BD=ID=AI,
BD |
DC |
故OD⊥BC,记垂足为E,则有BE=
1 |
2 |
作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,
∴Rt△BDE≌Rt△AIG,
于是,AG=BE=
1 |
2 |
1 |
2 |
故AB+AC=2BC,
∴
AB+AC |
BC |
2018-02-04
引用345342715的回答:
(1)证明:∵点I是△ABC的内心∴∠BAD=∠CAD,∠ABI=∠CBI∵∠CBD=∠CAD∴∠BAD=∠CBD∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD,∵∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD∴ID=BD;(2)解:连接OA、OD、BD和BI,∵OA=OD,OI⊥AD∴AI=ID,∵I为△ABC内心,∴∠BAD=∠BCD,∴弧BD=弧CD,∵弧CD=弧CD,∴∠BCD=∠BAD,∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI,=12(∠BAC+∠ACB),∵∠DIB=∠DAB+∠ABI=12(∠BAC+∠ABC),∴∠DIB=∠DBI,∴BD=ID=AI,BD=DC,故OD⊥BC,记垂足为E,则有BE=12BC,作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,∴Rt△BDE≌Rt△AIG,于是,AG=BE=12BC,但AG=12(AB+AC-BC),故AB+AC=2BC,∴AB+ACBC=2.
(1)证明:∵点I是△ABC的内心∴∠BAD=∠CAD,∠ABI=∠CBI∵∠CBD=∠CAD∴∠BAD=∠CBD∴∠BID=∠ABI+∠BAD,∠BAD=∠CAD=∠CBD,∵∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD∴ID=BD;(2)解:连接OA、OD、BD和BI,∵OA=OD,OI⊥AD∴AI=ID,∵I为△ABC内心,∴∠BAD=∠BCD,∴弧BD=弧CD,∵弧CD=弧CD,∴∠BCD=∠BAD,∴∠DBI=∠BCD+∠CBI=∠CAD+∠CBI,=12(∠BAC+∠ACB),∵∠DIB=∠DAB+∠ABI=12(∠BAC+∠ABC),∴∠DIB=∠DBI,∴BD=ID=AI,BD=DC,故OD⊥BC,记垂足为E,则有BE=12BC,作IG⊥AB于G,又∠DBE=∠IAG,而BD=AI,∴Rt△BDE≌Rt△AIG,于是,AG=BE=12BC,但AG=12(AB+AC-BC),故AB+AC=2BC,∴AB+ACBC=2.
展开全部
答案是错的吧,是直角三角形吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询