比较不等式的大小有多少种方法?

高中用得!!~详细一点更好啊!~最好有例题!~... 高中用得!!~
详细一点更好啊
!~
最好有例题!~
展开
 我来答
匿名用户
2013-08-25
展开全部
重点:不等式证明的主要方法的意义和应用;

难点:①理解分析法与综合法在推理方向上是相反的;

②综合性问题选择适当的证明方法.

(1)不等式证明的意义

不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.

(2)比较法证明不等式的分析

①在证明不等式的各种方法中,比较法是最基本、最重要的方法.

②证明不等式的比较法,有求差比较法和求商比较法两种途径.

由于 ,因此,证明 ,可转化为证明与之等价的 .这种证法就是求差比较法.

由于当 时, ,因此,证明 可以转化为证明与之等价的 .这种证法就是求商比较法,使用求商比较法证明不等式 时,一定要注意 的前提条件.

③求差比较法的基本步骤是:“作差——变形——断号”.

其中,作差是依据,变形是手段,判断符号才是目的.

变形的目的全在于判断差的符号,而不必考虑差值是多少.

变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式.或者变形为一个分式,或者变形为几个因式的积的形式等. 总之.能够判断出差的符号是正或负即可.

④作商比较法的基本步骤是:“作商——变形——判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明.
匿名用户
2013-08-25
展开全部
上面那个好详细的
主要是 做差 (这个比较普遍) 做商(和1比较)有的比较怪了 变形什么的 有的时候要做图才可以看出来 如果不是两个直接的数字的话 可能要用不等式
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-08-25
展开全部
3<5
3-5<0
我的意思是把不等式右边的式子移到左边
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式