当n取何值时,Sn取得最大值,并求出他的最大值。

在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出他的最大值。... 在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出他的最大值。 展开
泪笑2998
2013-08-25 · TA获得超过4.8万个赞
知道大有可为答主
回答量:7787
采纳率:83%
帮助的人:4054万
展开全部
﹛an﹜是等差数列
Sn=na1+n(n-1)d/2
=d/2n²+(a1-d/2)n
对称轴是n=(a1-d/2)/(-d)=(d/2-a1)/d
∵S10=S15
∴对称轴是n=(10+15)/2=25/2
∴最大值会在n=12和13处取得
∴(d/2-20)/d=25/2
∵25d=d-40,d=-5/3
Sn=-5/6n²+(20+5/6)n
∴Snmax=S12=-5/6×12²+(20+5/6)×12=-120+240+10=130
∴当n=12或13时,Sn取得最大值130

明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
来自:求助得到的回答
370116
高赞答主

2013-08-25 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.3亿
展开全部
解:
因为an是等差数列,所以S10=(a1+a10)*10/2=(2a1+9d)*5=10a1+45d
S15=(a1+a15)*15/2=(2a1+14d)*15/2=15a1+105d
因为S10=S15
所以10a1+45d=15a1+105d
60d=-5a1
d=-a1/12
因为a1=20,所以d=-5/3
an=20-5(n-1)/3=65/3-5n/3
Sn=(20+65/3-5n/3)*n/2=125n/6-5n²/6

(2)当n为何值时,Sn有最大值?并求出它的最大值
解:
Sn=125n/6-5n²/6
=-5/6*(n²-25n)
=-5/6*(n²-25n+625/4)+3125/24
=-5/6*(n-25/2)²+3125/24
显然n=25/2时,Sn最大,但是n是整数,所以比较当n=12,和n=13时,Sn的大小
当n=12时,Sn=125*12/6-5*12²/6=130
当n=13时,Sn=125*13/6-5*13²/6=130
所以当n取12,或者13的时候,Sn有最大值,最大值为130
追问
谢谢您的详细回答,但看在楼上的原创回答上,我还是采纳他的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式