已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(Ⅰ)求数列{an}的通项公式;(Ⅱ)是否存在正整数n,使得Sn≥2013?...
已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,使得Sn≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由. 展开
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)是否存在正整数n,使得Sn≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由. 展开
2个回答
2013-08-28
展开全部
因为a2+a3+a4=-18,故a3=-6.又S4,S2,S3成等差数列,故2S2=S4+S3,得:2a3+a4=0,得a4=12,故an=18n-60。易得Sn=9n^2-51n.又Sn≥2013,解得即是答案
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询