已知数列{an}的前n项和为Sn,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.

已知数列{an}的前n项和为Sn,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设a1>0,λ=100,当n为何值时,数... 已知数列{an}的前n项和为Sn,常数λ>0,且λa1an=S1+Sn对一切正整数n都成立.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设a1>0,λ=100,当n为何值时,数列{lg

1 /an }的前n项和最大?
展开
泪笑2998
推荐于2016-12-01 · TA获得超过4.8万个赞
知道大有可为答主
回答量:7787
采纳率:83%
帮助的人:4000万
展开全部
解(I)当n=1时,λ a12 =2s1=2a1
∴a1(λa1-2)=0
若取a1=0,则sn=0,an=sn-sn-1=0
∴an=0(n≥1)
若a1≠0,则a1=2/λ,
当n≥2时,2an=2/λ+sn,2an−1=2/λ+sn−1
两式相减可得,2an-2an-1=an
∴an=2an-1,从而可得数列{an}是等比数列
∴an=a1•2^(n-1)=2/λ•2^(n−1)=2^n/λ
综上可得,当a1=0时,an=0,当a1≠0时,an=2^n/λ
(II)当a1>0且λ=100时,令bn=lg1/an
由(I)可知bn=lg100/2^n =2−nlg2
∴{bn}是单调递减的等差数列,公差为-lg2
∴b1>b2>…>b6=lg100 2^6=lg100 64 >0
当n≥7时,bn≤b7=lg100 2^7=lg100 128 <0
∴数列{lg1/an}的前6项和最大
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式