数学圆的方程问题,在线等
已知圆C1:x^2+y^2=4与圆C2:x^2+y^2+2ax+2by=0,(a^2+b^2≠0)的公共弦长为1,求动圆C2的圆心C2所在曲线的方程...
已知圆C1:x^2+y^2=4与圆C2:x^2+y^2+2ax+2by=0,(a^2+b^2≠0)的公共弦长为1,求动圆C2的圆心C2所在曲线的方程
展开
2个回答
展开全部
方程C2-C1就是公共弦的方程:
ax+by+2=0
因为公共弦长为1,C1的半径为2,根据勾股定理,所以C1的圆心(0,0)到弦的距离的平方为:
d^2=2^2-(1/2)^2=15/4
所以由点(0,0)到直线ax+by+2=0的距离的平方为15/4:
15/4=|a*0+b*0+2|^2/(a^2+b^2)
所以,a^2+b^2=16/15
而C2的圆心为(-a,-b),所以
a^2+b^2=16/15就是答案
跳了很多步骤,不知道你数学基础怎么样,基础好的话应该能看懂,如果哪里没明白,再问我吧,学弟(学妹)……
ax+by+2=0
因为公共弦长为1,C1的半径为2,根据勾股定理,所以C1的圆心(0,0)到弦的距离的平方为:
d^2=2^2-(1/2)^2=15/4
所以由点(0,0)到直线ax+by+2=0的距离的平方为15/4:
15/4=|a*0+b*0+2|^2/(a^2+b^2)
所以,a^2+b^2=16/15
而C2的圆心为(-a,-b),所以
a^2+b^2=16/15就是答案
跳了很多步骤,不知道你数学基础怎么样,基础好的话应该能看懂,如果哪里没明白,再问我吧,学弟(学妹)……
追问
谢谢!
展开全部
圆C1的圆心为O(0,0),半径R=2
圆C2化简:(x+a)²+(y+b)²=a²+b²
则其圆心O'(-a,-b),半径 r=√(a²+b²)
显然二圆心与弦垂直平分,设交点为A,二圆的交点为B、C
则OB=2,AB=1/2,OA=√(OB²-AB²)=√15/2
O'B=√(a²+b²),O'A=√(O'B²-AB²)=√(a²+b²-1/4)
OO'=√[(0-(-a))²+(0-(-b))²]=√(a²+b²)=OA+O'A=√(a²+b²-1/4)+√15/2
√(a²+b²-1/4)=√(a²+b²)-√15/2
二边平方,a²+b²-1/4=a²+b²+15/4-2√(a²+b²)*√15/2
√(a²+b²)*√15=4,√(a²+b²)=4/√15
二边平方:a²+b²=16/15
圆C2化简:(x+a)²+(y+b)²=a²+b²
则其圆心O'(-a,-b),半径 r=√(a²+b²)
显然二圆心与弦垂直平分,设交点为A,二圆的交点为B、C
则OB=2,AB=1/2,OA=√(OB²-AB²)=√15/2
O'B=√(a²+b²),O'A=√(O'B²-AB²)=√(a²+b²-1/4)
OO'=√[(0-(-a))²+(0-(-b))²]=√(a²+b²)=OA+O'A=√(a²+b²-1/4)+√15/2
√(a²+b²-1/4)=√(a²+b²)-√15/2
二边平方,a²+b²-1/4=a²+b²+15/4-2√(a²+b²)*√15/2
√(a²+b²)*√15=4,√(a²+b²)=4/√15
二边平方:a²+b²=16/15
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询