已知:如图①,在△ABC中,∠C>∠B,AD⊥BC于D,AE平分∠BAC

(1)求证:∠EAD=½(∠C-∠B);(2)若AE为三角形的角平分线,F为AE上的一点,且FD垂直BC于D,如图②,求证:∠EFD=½(∠C-∠B)... (1)求证:∠EAD=½(∠C-∠B);
(2)若AE为三角形的角平分线,F为AE上的一点,且FD垂直BC于D,如图②,求证:∠EFD=½(∠C-∠B);
(3)若F点在AE的延长线上,上述结论还成立吗?
展开
海语天风001
高赞答主

2013-09-07 · 你的赞同是对我最大的认可哦
知道大有可为答主
回答量:1.3万
采纳率:100%
帮助的人:8142万
展开全部
1、证明:
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AD⊥BC
∴∠ADC=90
∴∠CAD+∠C=90
∴∠CAD=90-∠C
∴∠EAD=∠CAE-∠CAD=90-(∠B+∠C)/2-90+∠C=(∠C-∠B)/2
2、∠DFE=(∠C-∠B)/2
证明:过点A作AH⊥BC于H
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AH⊥BC
∴∠AHC=90
∴∠CAH+∠C=90
∴∠CAH=90-∠C
∴∠HAE=∠CAE-∠CAD=90-(∠B+∠C)/2-90+∠C=(∠C-∠B)/2
∵AH⊥BC,FD⊥BC
∴AH∥FD
∴∠DFE=∠HAE (同位角相等)
∴∠DFE=(∠C-∠B)/2
3、∠DFE=(∠C-∠B)/2
证明:过点A作AH⊥BC于H
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AH⊥BC
∴∠AHC=90
∴∠CAH+∠C=90
∴∠CAH=90-∠C
∴∠HAE=∠CAE-∠CAD=90-(∠B+∠C)/2-90+∠C=(∠C-∠B)/2
∵AH⊥BC,FD⊥BC
∴AH∥FD
∴∠DFE=∠HAE(内错角相等)
∴∠DFE=(∠C-∠B)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式