已知,如图三角形ABC中,角C大于角B,AD垂直BC于D,AE平分角BAC.
若AE为三角形ABC的角平分线,F为AE上的一点,且FD垂直BC于D,如图求详细解题方法,好的加分!!~...
若AE为三角形ABC的角平分线,F为AE上的一点,且FD垂直BC于D,如图
求详细解题方法,好的加分!!~ 展开
求详细解题方法,好的加分!!~ 展开
2个回答
展开全部
1、∠DAE=(∠C-∠B)/2
证明:
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AD⊥BC
∴∠ADC=90
∴∠CAD+∠C=90
∴∠CAD=90-∠C
∴∠DAE=∠CAE-∠CAD=90-(∠B+∠C)/2-90+∠C=(∠C-∠B)/2
2、∠DFE=(∠C-∠B)/2
证明:过点A作AH⊥BC于H
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AH⊥BC
∴∠AHC=90
∴∠CAH+∠C=90
∴∠CAH=90-∠C
∴∠HAE=∠CAE-∠CAD=90-(∠B+∠C)/2-90+∠C=(∠C-∠B)/2
∵AH⊥BC,FD⊥BC
∴AH∥FD
∴∠DFE=∠HAE
∴∠DFE=(∠C-∠B)/2
证明:
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AD⊥BC
∴∠ADC=90
∴∠CAD+∠C=90
∴∠CAD=90-∠C
∴∠DAE=∠CAE-∠CAD=90-(∠B+∠C)/2-90+∠C=(∠C-∠B)/2
2、∠DFE=(∠C-∠B)/2
证明:过点A作AH⊥BC于H
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AH⊥BC
∴∠AHC=90
∴∠CAH+∠C=90
∴∠CAH=90-∠C
∴∠HAE=∠CAE-∠CAD=90-(∠B+∠C)/2-90+∠C=(∠C-∠B)/2
∵AH⊥BC,FD⊥BC
∴AH∥FD
∴∠DFE=∠HAE
∴∠DFE=(∠C-∠B)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询