数学证明题(急)

证明恒等式:1/2+cosx+cos2x+······+cosnx=sin(nx+x/2)/2sin(x/2)试用至少两种方法证明!!!... 证明恒等式:1/2+cosx+cos2x+······+cosnx=sin(nx+x/2)/2sin(x/2)
试用至少两种方法证明!!!
展开
 我来答
快乐逸8
2013-09-08 · 超过14用户采纳过TA的回答
知道答主
回答量:51
采纳率:0%
帮助的人:26.9万
展开全部
希望你学过复数的三角形式...

设z=cosx+isinx

由棣美弗定理 z^n=cosnx+isinnx

则上式左边即为

z+z^2+z^3+...+z^n的实部

又z+z^2+...+z^n=z(1-z^n)/(1-z)

=(cosx+isinx)(1-cosnx-isinnx)(1-cosx+isinx)/[(1-cosx)^2+sin^2x]

然后只需把分子实部找出来,利用组合原理按顺序找

比如找第一个括号的cosx 然后第二个括号的1 第三个括号的1和cosx

然后依次 注意要乘都有i的 比如 找了isinx 就要搭配isinnx和1-cosx

这样

实部A=(cosnx+cosx-cos(n+1)x-1)/2(1-cosx)

=2cos((n+1)x/2)sin((n-1)x/2)-2cos^2((n+1)x/2)/4sin^2(x/2)

提公因式 再和差化积

=cos((n+1)x/2)*2sin(nx/2)sin(x/2)/2sin^2(x/2)

=右边

故等式得证

不知对不 你看一下
伍馥树高邈
2019-09-24 · TA获得超过3958个赞
知道大有可为答主
回答量:3156
采纳率:30%
帮助的人:229万
展开全部
要证明A包含于B,就是证明,对于任意元素P属于A,则,P属于B。(定义)
集合A:x=x方+ax+b的解集
集合B:x=(x方+ax+b)方+a(x方+ax+b)+b的解集
即,证明如果x=x方+ax+b,那么,x=(x方+ax+b)方+a(x方+ax+b)+b
对于任意x=x方+ax+b,(x方+ax+b)方+a(x方+ax+b)+b=x方+ax+b=x……(方法是将x方+ax+b=x带入)
那么x就满足x=(x方+ax+b)方+a(x方+ax+b)+b
也就是说x也是x=(x方+ax+b)方+a(x方+ax+b)+b的解集,就是说x属于B。
根据第一行定义,得证!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式