若定义在R上的偶函数f(x)在(-∞,0]上单调递减,且f(-1)=0,则不等式f(x)>0的
若定义在R上的偶函数f(x)在(-∞,0]上单调递减,且f(-1)=0,则不等式f(x)>0的解集是A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-...
若定义在R上的偶函数f(x)在(-∞,0]上单调递减,且f(-1)=0,则不等式f(x)>0的解集是
A. (-∞,-1)∪(1,+∞)
B. (-∞,-1)∪(0,1)
C. (-1,0)∪(0,1)
D. (-1,0)∪(1,+∞) 展开
A. (-∞,-1)∪(1,+∞)
B. (-∞,-1)∪(0,1)
C. (-1,0)∪(0,1)
D. (-1,0)∪(1,+∞) 展开
展开全部
答案A
分析:分x≤0和x>0时两种情况,对不等式加以讨论,再结合函数为偶函数且在(-∞,0]上单调递减解之,即得实数x的取值范围,即得原不等式的解集.
解答:①当x≤0时,f(x)>0即f(x)>f(-1)
∵f(x)在(-∞,0]上单调递减,
∴x<-1
②当x>0时,因为偶函数f(x)满足:f(-x)=f(x)
所以f(x)>0即f(-x)>f(-1)
∵f(x)在(-∞,0]上单调递减,
∴-x<-1,可得x>1
综上所述,不等式f(x)>0的解集是(-∞,-1)∪(1,+∞)
故选A
点评:本题给出函数为偶函数且在负数范围内是减函数,求不等式f(x)>0的解集.考查了函数单调性和奇偶性的综合的知识,属于基础题.
分析:分x≤0和x>0时两种情况,对不等式加以讨论,再结合函数为偶函数且在(-∞,0]上单调递减解之,即得实数x的取值范围,即得原不等式的解集.
解答:①当x≤0时,f(x)>0即f(x)>f(-1)
∵f(x)在(-∞,0]上单调递减,
∴x<-1
②当x>0时,因为偶函数f(x)满足:f(-x)=f(x)
所以f(x)>0即f(-x)>f(-1)
∵f(x)在(-∞,0]上单调递减,
∴-x<-1,可得x>1
综上所述,不等式f(x)>0的解集是(-∞,-1)∪(1,+∞)
故选A
点评:本题给出函数为偶函数且在负数范围内是减函数,求不等式f(x)>0的解集.考查了函数单调性和奇偶性的综合的知识,属于基础题.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询