函数z=f(x,y)在点(x0,y0)处连续是它在该点偏导数存在的什么条件
函数z=f(x,y)在点(x0,y0)处连续是它在该点偏导数存在的:A必要而非充分条件B充分而非必要条件C充分必要条件D既非充分又非必要条件说明理由谢谢...
函数z=f(x,y)在点(x0,y0)处连续是它在该点偏导数存在的:
A必要而非充分条件 B充分而非必要条件
C充分必要条件 D既非充分又非必要条件
说明理由
谢谢 展开
A必要而非充分条件 B充分而非必要条件
C充分必要条件 D既非充分又非必要条件
说明理由
谢谢 展开
展开全部
选A必要非充分条件
如果函数z在某一点(x0,y0)处不连续,那么它在这一点的偏导数是不存在的。而且,即使在某一点连续,也不能保证它在该点一定存在偏导数,所以选A。
扩展资料
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。
y方向的偏导
同样,把 x 固定在 x0,让 y 有增量 △y ,如果极限存在那么此极限称为函数 z=(x,y) 在 (x0,y0)处对 y 的偏导数。记作f'y(x0,y0)。
展开全部
选A必要非充分条件
如果函数z在某一点(x0,y0)处不连续,那么它在这一点的偏导数是不存在的。而且,即使在某一点连续,也不能保证它在该点一定存在偏导数,所以选A。
如果函数z在某一点(x0,y0)处不连续,那么它在这一点的偏导数是不存在的。而且,即使在某一点连续,也不能保证它在该点一定存在偏导数,所以选A。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在。所以选D
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |