设f''(x)在[0,1]连续,且f(0)=1,f(2)=3,f'(2)=5,求∫[0,1]xf''(2x)dx

 我来答
机器1718
2022-08-13 · TA获得超过6806个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:158万
展开全部
∫[0→1]xf''(2x)dx
=(1/2)∫[0→1]xdf'(2x)
=(1/2)xf'(2x)|[0→1]-(1/2)∫[0→1]f'(2x)dx
=(1/2)f'(2)-(1/4)f(2x)|[0→1]
=5/2-(1/4)[f(2)-f(0)]
=5/2-1/2
=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式