n趋于无穷求(n+1)^1/3-n^1/3的极限
n趋于无穷求(n+1)^1/3-n^1/3的极限
lim(n→∞) (n+1)^1/3-n^1/3 立方差公式,上下同时乘以 (n+1)^2/3+n^1/3*(n+1)^1/3+n^2/3
=lim(n→∞) [(n+1)-n]/[(n+1)^2/3+n^1/3*(n+1)^1/3+n^2/3]
=lim(n→∞) 1/[(n+1)^2/3+n^1/3*(n+1)^1/3+n^2/3]
=0
求极限:lim((2n∧2-3n+1)/n+1)×sin<1/n> n趋于无穷
解:
lim【n→∞】(2n²-3n+1)/(n+1)×sin(1/n)
=lim【n→∞】(2n²-3n+1)/(n+1)×(1/n)
=lim【n→∞】(2n²-3n+1)/(n²+n)
=lim【n→∞】(2-3/n+1/n²)/(1+1/n)
=(2-0+0)/(1+0)
=2
答案:2
求极限lim(n!)^(1/n) n趋于无穷
可以应用斯特林公式:
n!~√(2πn)* (n/e)^n
因此 (n!)^(1/n)~ √(2πn)^(1/n)*(n/e)~ n/e
因此lim(n!)^(1/n) ->n/e-->∞
lim[1/n-1/(n+1)+1/(n+2)-1/(n+3)+.+1/(2n-1)-1/2n] n趋于无穷的极限
lim[1/n-1/(n+1)+1/(n+2)-1/(n+3)+...+1/(2n-1)-1/2n]
=lim[1/n(n+1)+1/(n+2)(n+3)+...+1/(2n-1)2n]
n/(2n-1)2n<=1/n(n+1)+1/(n+2)(n+3)+...+1/(2n-1)2n<=n/n(n+1)
所以lim[1/n(n+1)+1/(n+2)(n+3)+...+1/(2n-1)2n]=0
极限问题 1.lim(n^1/3.sin n^3)/(n+1) n趋于无穷 2.(tanx)^sinx x趋于0正
1=lim(n^1/3/(n+1))*sinn^3=无穷小乘以有界量=0 lim(n^1/3/(n+1))*=0,sinn^3有届
2=e^(limtanx*sinx),指数部分是个0乘以无穷大的类型用骆必达法则,求得结果为1
求(n!)^(1/n)/n,n趋于无穷时的极限
这个问题比较难,可分为三个步骤来完成:
1、设xn=[n!^(1/n)]/n,则
㏑xn=㏑{[n!^(1/n)]/n}
=(1/n)㏑[n!/n^n]
=(1/n)[㏑1/n+㏑2/n+…+㏑n/n]
=(1/n)∑(k=1,n)㏑k/n(可以理解为积分和)
2、转化为定积分:
=∫(0,1)lnxdx
=[xlnx-x](0,1)
3、求无穷积分值:
=-1-lim(x→0)[xlnx-x]
=-1-lim(x→0)lnx/(1/x)
=-1-lim(x→0)(1/x)/(-1/x^2)
=-1-lim(x→0)(-x)
=-1;
所以:lim(n→∞)㏑xn=-1
lim(n→∞)xn=1/e。
极限n趋于无穷n∧n/(n+1)∧(n+1)?
lim(n->∞) n^n/(n + 1)^(n + 1)
= lim(n->∞) [ n/(n + 1) ]^n * 1/(n + 1)
= 1/lim(n->∞) (1 + 1/n)^n * 1/(n + 1)
= 1/e * lim(n->∞) 1/(n + 1)
= 1/e * 0
= 0
n趋于无穷 lim n[1/(n^2+1)+1/(n^2+2)+……+1/2n^2] 求极限
根据数列极限的夹逼性
因为n[1/(n^2+1)+1/(n^2+2)+...+1/2n^2]
<n[1/(n^2+1)+1/(n^2+1)+...+1/(n^2+1)]
=n^3/(n^2+1)
且n[1/(n^2+1)+1/(n^2+2)+...+1/2n^2]
>n[1/2n^2+1/2n^2+...+1/2n^2]
=n^3/2n^2
=n/2
因为n^3/(n^2+1)和n/2都趋向于+∞
所以原式也趋向于+∞
求当n趋于无穷时 n^(2/3)*sinn!/(n+1)的极限
你这个n+1在sin里面还是外面
外面的话就是0
0<|n^(2/3)*(sinn!)/(n+1)|<n^(2/3)/n=1/n^(1/3)→0
所以由迫敛性,极限是0
设a>0,a≠1,当n趋于无穷时,求n^2[a^1/n + a﹙-1/n﹚ - 2]的极限?
n→∞时
n^2[a^(1/n)+a^(-1/n)-2]
=[a^(1/n)+a^(-1/n)-2]/[n^(-2)]
→[(1/n)a^(1/n)-(1/n)a^(-1/n)]lna/[-2n^(-3)]
=[a^(1/n)-a^(-1/n)]lna/[-2n^(-2)]
→[(1/n)a^(1/n)+(1/n)a^(-1/n)](lna)^2/[4n^(-3)]
=4(nlna)^2*[a^(1/n)+a^(-1/n)]
→+∞.(不存在)