设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+

设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn... 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,b1=2,a2=3,求通项an,bn 展开
 我来答
tllau38
高粉答主

2013-09-17 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
an,bn,a(n+1)成等差数列 =>
an+a(n+1)=2bn (1)

bn,a(n+1),b(n+1)成等比数列 =>

bn.b(n+1) = [a(n+1)]^2 (2)

sub(2) into (1)
√[b(n-1).bn]+√[bn.b(n+1)]=2bn
√b(n-1)+√b(n+1)=2√bn
=> √bn 成等差数列

a1=1,b1=2,a2=3

from (2)
b1.b2 = (a2)^2
2b2 = 9
b2 =9/2
d = √b2-√b1 = 3√2/2 - √2 = √2/2

√bn=√b1+(n-1)d
=√2 + (n-1)√2/2
= (n+1)√2/2
bn =(n+1)^2/2

from (1)
an+a(n+1)=2bn
=(n+1)^2
let
a(n+1) +k1(n+1)^2 +k2(n+1)+k3 = -[an + k1n^2+k2n+k3]

coef. of n^2
-2k1 = 1
k1 = -1/2
coef.of n
-2k2-2k1=2
1-2k2=2
k2 =-1/2
coef. of constant
-2k3-k1-k2 =1
-2k3+1/2+1/2 =1
k3 =0

an+a(n+1)=(n+1)^2
a(n+1) -(1/2)(n+1)^2 -(1/2)(n+1) = -[an - (1/2)n^2-(1/2)n]
let
cn =an - (1/2)n^2-(1/2)n
cn 是等比数列, q= -1
a(n+1) -(1/2)(n+1)^2 -(1/2)(n+1) = -[an - (1/2)n^2-(1/2)n]
(an - (1/2)n^2-(1/2)n) = (-1)^(n-2) . [a2 - (1/2)2^2-(1/2)2]
= (-1)^(n-2) . (3-2-1)
= 0
an = (1/2)n^2+(1/2)n
追问
有另一种方法吗?
追答
from (2)
bn.b(n+1) = [a(n+1)]^2

[a(n+1)]^2 = [(n+1)^2/2](n+2)^2/2]
a(n+1) = (n+1)(n+2)/2
an= n(n+1)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式