证明两整数a,b互质的充要条件是:存在两个整数s,t满足as+bt=1

帐号已注销
2021-10-22 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

证明:

充分性:因为as+bt=1,设c=(a,b),则c整除a和b,所以c整除as+bt,即c整除1,所以c=1,即a和b互质

必要性:因为a和b互质,所以(a,b)=1。

考虑非空集合A={as+bt│s,t为任意整数},不妨设a0是A中最小正整数且a0=as0+bt0,y是A中任意一个元素,由带余除法 y=as+bt=q(as0+bt0)+r,0<=r<a0,则r=a(s-qs0)+b(t-qt0)属于A。

若r非零则r是A中比a0更小之正整数,矛盾,所以r=0,从而a0整除y,特别地有a0整除a,a0整除b,所以a0整除(a,b)=1,因此a0=1,所以存在整数s0和t0使得as0+bt0=1

区别联系

整除与除尽既有区别又有联系。除尽是指数b除以数a(a≠0)所得的商是整数或有限小数而余数是零时,我们就说b能被a除尽(或说a能除尽b)。因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了。它们之间的联系就是整除是除尽的特殊情况。

匿名用户
2013-09-20
展开全部
证明:1)充分性:因为as+bt=1,设c=(a,b),则c整除a和b,所以c整除as+bt,即c整除1,所以c=1,即a和b互质
2)必要性:因为a和b互质,所以(a,b)=1。
考虑非空集合A={as+bt│s,t为任意整数},不妨设a0是A中最小正整数且a0=as0+bt0,y是A中任意一个元素,由带余除法 y=as+bt=q(as0+bt0)+r,0<=r<a0,则r=a(s-qs0)+b(t-qt0)属于A,若r非零则r是A中比a0更小之正整数,矛盾,所以r=0,从而a0整除y,特别地有a0整除a,a0整除b,所以a0整除(a,b)=1,因此a0=1,所以存在整数s0和t0使得as0+bt0=1
证毕。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式