如图在三角形ABC中角B=90度,AB =6厘米,BC=12厘米,点P从点A开始沿边AB向点B以1厘米/S的速度移动点Q从点B开
如图在三角形ABC中角B=90度,AB=6厘米,BC=12厘米,点P从点A开始沿边AB向点B以1厘米/S的速度移动点Q从点B开始沿边BC向点C以2厘米/S的速度移动.如果...
如图在三角形ABC中角B=90度,AB =6厘米,BC=12厘米,点P从点A开始沿边AB向点B以1厘米/S的速度移动点Q从点B开始沿边BC向点C以2厘米/S的速度移动.如果点P,Q分别从点A,B同时出发,经过几秒钟后,点PQ之间的距离最小,经过几秒后三角形PBQ的面积最大,最大是多少
展开
1个回答
展开全部
图请你自己画
设两动点运动的时间为t,则BP=6 - t,BQ = 2t,
因为△ABC中,∠B=90°,故△ABC中是直角三角形,
所以PQ^2 = BP^2 + BQ^2 = (6 - t)^2 + (2t)^2 = 5t^2 - 12t + 36 = 5[t^2 - 2*(6/5)*t + (6/5)^2] - 36/5 + 36
= 5( t - 6/5)^2 + 144/5
显然,要使PQ最小,PQ^2必须最小,由上式可知当t = 6/5时,PQ最小,即从A、B同时出发,经6/5秒后,PQ之间的距离最小。
S△BPQ =(1/2)*BP*BQ = (1/2) * (6 - t) * (2t) = -t^2 + 6t = -(t^2 - 6t + 9) + 9 = -(t-3)^2 + 9
很显然,当t = 3时,上式的值最大,即经过3秒后, △BPQ 的面积最大,最大面积是9cm^2
设两动点运动的时间为t,则BP=6 - t,BQ = 2t,
因为△ABC中,∠B=90°,故△ABC中是直角三角形,
所以PQ^2 = BP^2 + BQ^2 = (6 - t)^2 + (2t)^2 = 5t^2 - 12t + 36 = 5[t^2 - 2*(6/5)*t + (6/5)^2] - 36/5 + 36
= 5( t - 6/5)^2 + 144/5
显然,要使PQ最小,PQ^2必须最小,由上式可知当t = 6/5时,PQ最小,即从A、B同时出发,经6/5秒后,PQ之间的距离最小。
S△BPQ =(1/2)*BP*BQ = (1/2) * (6 - t) * (2t) = -t^2 + 6t = -(t^2 - 6t + 9) + 9 = -(t-3)^2 + 9
很显然,当t = 3时,上式的值最大,即经过3秒后, △BPQ 的面积最大,最大面积是9cm^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询