数学求救
展开全部
(1)∵ PA⊥底面ABCD,故AP⊥改侍CD.
又 CD⊥AC,从而CD⊥面ACP.
∵AE在面ACP上,故知CD⊥AE.
(2) PA⊥底核御吵面ABCD => AP⊥AB
又AB⊥AD,从而AB⊥面PAD => PD⊥AB.
AB=BC,∠ABC=60° => △ABC为等边三角形.
=> AC=AB=PA,即有△APC为等腰三角形.
又E为PC的中点,故AE⊥PC.
由(1)可知,拆颂AE垂直CD => AE⊥面PCD =>AE⊥PD
从而知,PD⊥面ABE.
又 CD⊥AC,从而CD⊥面ACP.
∵AE在面ACP上,故知CD⊥AE.
(2) PA⊥底核御吵面ABCD => AP⊥AB
又AB⊥AD,从而AB⊥面PAD => PD⊥AB.
AB=BC,∠ABC=60° => △ABC为等边三角形.
=> AC=AB=PA,即有△APC为等腰三角形.
又E为PC的中点,故AE⊥PC.
由(1)可知,拆颂AE垂直CD => AE⊥面PCD =>AE⊥PD
从而知,PD⊥面ABE.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1) PA⊥面ABCD =>PA⊥CD
CD⊥AC =>CD⊥面PAC =>CD垂直AE
(2) AB=BC
∠ABC=60 =>AB=AC=BC=PA
又E是PC终点 =>AE⊥核数陆PC
加上(1)中AE⊥改顷CD
所毕弊以AE⊥面PCD =>PD⊥AE
又PA⊥AB AB⊥AD =>AB⊥面PAD =>AB⊥PD
综上有PD⊥面ABE
CD⊥AC =>CD⊥面PAC =>CD垂直AE
(2) AB=BC
∠ABC=60 =>AB=AC=BC=PA
又E是PC终点 =>AE⊥核数陆PC
加上(1)中AE⊥改顷CD
所毕弊以AE⊥面PCD =>PD⊥AE
又PA⊥AB AB⊥AD =>AB⊥面PAD =>AB⊥PD
综上有PD⊥面ABE
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)PA⊥面ABCD =>PA⊥CD
AC⊥CD =>CD⊥面PAC =>CD垂直AE
(2)AE⊥CD
AB=BC,∠ABC=60 =>ABC为等边三槐灶键角形=>AC=AB
PA=AB=AC,PA⊥AC=>ACP为等辩弯腰直角铅巧三角形
E为PC中点=>AE⊥PC
=>AE⊥面PCD =>AE⊥PD
AB⊥PD=>PD⊥面ABE
AC⊥CD =>CD⊥面PAC =>CD垂直AE
(2)AE⊥CD
AB=BC,∠ABC=60 =>ABC为等边三槐灶键角形=>AC=AB
PA=AB=AC,PA⊥AC=>ACP为等辩弯腰直角铅巧三角形
E为PC中点=>AE⊥PC
=>AE⊥面PCD =>AE⊥PD
AB⊥PD=>PD⊥面ABE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询