已知函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y)
已知函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y)。当x>0时,f(x)<0,且f(-1)=2,求f(x)在[-3,3]上的最大值和最小值。...
已知函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y)。当x>0时,f(x)<0,且f(-1)=2,求f(x)在[-3,3]上的最大值和最小值。
展开
展开全部
解:函数f(x)的定义域为R,且对任意x,y属于R,都有f(x+y)=f(x)+f(y)
令:x=y=0代入可得:f(0)=f(0)+f(0),所以f(0)=0
令y=-x代入可得:f(x-x)=f(x)+f(-x),
即f(0)=f(x)+f(-x), 从而 f(x)+f(-x)=0
所以:f(-x)=-f(x)
设任意实数x1,x2,且x1<x2
则有:f(x2)-f(x1)=f(x2)+[-f(x1)]=f(x2)+f(-x1)=f(x2-x1)
由已知条件,x>0时,有f(x)<0;
现在x2-x1>0,所以得到f(x2-x1)<0,
即f(x2)-f(x1)<0,由于x1<x2,且都是实数。
f(x)在R上是减函数。
∵f(-1)=2
∴f(-2)=2f(-1)=4
f(-3)=f(-1)+f(-2)=6
f(3)=-6
∴最大值6,最小值-6
令:x=y=0代入可得:f(0)=f(0)+f(0),所以f(0)=0
令y=-x代入可得:f(x-x)=f(x)+f(-x),
即f(0)=f(x)+f(-x), 从而 f(x)+f(-x)=0
所以:f(-x)=-f(x)
设任意实数x1,x2,且x1<x2
则有:f(x2)-f(x1)=f(x2)+[-f(x1)]=f(x2)+f(-x1)=f(x2-x1)
由已知条件,x>0时,有f(x)<0;
现在x2-x1>0,所以得到f(x2-x1)<0,
即f(x2)-f(x1)<0,由于x1<x2,且都是实数。
f(x)在R上是减函数。
∵f(-1)=2
∴f(-2)=2f(-1)=4
f(-3)=f(-1)+f(-2)=6
f(3)=-6
∴最大值6,最小值-6
2013-10-05 · 知道合伙人教育行家
关注
展开全部
①令y=0
则f(x)=f(x)+f(0)
所以f(0)=0
②任取x1<x2,令x=x1,y=x2-x1
则y>0,所以f(y)=f(x2-x1)<0
从而:f(x2)=f(x1)+f(x2-x1)<f(x1)
所以f(x)单调递减
③令y=-x
则f(0)=f(x)+f(-x)
所以f(-x)=-f(x)
f(x)是奇函数
④f(-1)=2,所以f(-2)=f(-1)+f(-1)=4
f(-3)=f(-1)+f(-2)=6
因为奇偶性,所以f(3)=-f(-3)=-6
所以f(x)在[-3,3]上的最大值为f(-3)=6,最小值为f(3)=-6
如果你认可我的回答,请及时点击右下角的【采纳为满意回答】按钮
我是百度知道专家,你有问题也可以在这里向我提问:
http://zhidao.baidu.com/prof/view/yq_whut
则f(x)=f(x)+f(0)
所以f(0)=0
②任取x1<x2,令x=x1,y=x2-x1
则y>0,所以f(y)=f(x2-x1)<0
从而:f(x2)=f(x1)+f(x2-x1)<f(x1)
所以f(x)单调递减
③令y=-x
则f(0)=f(x)+f(-x)
所以f(-x)=-f(x)
f(x)是奇函数
④f(-1)=2,所以f(-2)=f(-1)+f(-1)=4
f(-3)=f(-1)+f(-2)=6
因为奇偶性,所以f(3)=-f(-3)=-6
所以f(x)在[-3,3]上的最大值为f(-3)=6,最小值为f(3)=-6
如果你认可我的回答,请及时点击右下角的【采纳为满意回答】按钮
我是百度知道专家,你有问题也可以在这里向我提问:
http://zhidao.baidu.com/prof/view/yq_whut
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
令x=y=0,得f(0)=2f(0)
所以f(0)=0;
再令y=-x,得f(0)=f(x)+f(-x),f(x)=-f(-x)
所以f(x)为奇函数;
设x>y>0,则带入得,f(x+y)=f(x)+f(y)
观察可知,上面三项全是负数,所以得到f(x+y)<f(x),这表明f(x)在x>0的范围是递减函数,又根据其为奇函数,所以在x<0时,f(x)仍单调递减。
即f(-3)为最大值,f(3)为最小值,
令x=y=-1,得f(-2)=4,
f(-3)=f(-2)+f(-1)=6
f(3)=-f(-3)=-6。
令x=y=0,得f(0)=2f(0)
所以f(0)=0;
再令y=-x,得f(0)=f(x)+f(-x),f(x)=-f(-x)
所以f(x)为奇函数;
设x>y>0,则带入得,f(x+y)=f(x)+f(y)
观察可知,上面三项全是负数,所以得到f(x+y)<f(x),这表明f(x)在x>0的范围是递减函数,又根据其为奇函数,所以在x<0时,f(x)仍单调递减。
即f(-3)为最大值,f(3)为最小值,
令x=y=-1,得f(-2)=4,
f(-3)=f(-2)+f(-1)=6
f(3)=-f(-3)=-6。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询