已知三角形ABC的面积为S,求证a²+b²+c²大于过等于4√3S 这是1961年IMO题目
展开全部
根据余弦定理有正弦面积定理可得:
c2= b2+ a2-2abcosC,即c2 -b2- a2=-2abcosC
S=1/2absinC,即absinC=2S
可由此等式进行:sin(π/6+C)≤1
展开可得sinπ/6cosC+cosπ/6sinC=1/2cosC+√3/2sinC≤1
等式1/2cosC+√3/2sinC≤1两边同时乘以4ab可得:4ab-2abcosC≥2√3absinC
将-2abcosC= a2 -b2- c2,absinC=2S代入上式可得
c2 -a2- b2+4ab≥4√3S
根据三边循环性可得
b2 -c2- a2+4ac≥4√3S
a2 -b2- c2+4bc≥4√3S
您好,很高兴为您解答,hua395288466为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
如可以请点击 本页面的 满意
c2= b2+ a2-2abcosC,即c2 -b2- a2=-2abcosC
S=1/2absinC,即absinC=2S
可由此等式进行:sin(π/6+C)≤1
展开可得sinπ/6cosC+cosπ/6sinC=1/2cosC+√3/2sinC≤1
等式1/2cosC+√3/2sinC≤1两边同时乘以4ab可得:4ab-2abcosC≥2√3absinC
将-2abcosC= a2 -b2- c2,absinC=2S代入上式可得
c2 -a2- b2+4ab≥4√3S
根据三边循环性可得
b2 -c2- a2+4ac≥4√3S
a2 -b2- c2+4bc≥4√3S
您好,很高兴为您解答,hua395288466为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
如可以请点击 本页面的 满意
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询