已知关于x的一元二次方程x^2+(2m-1)x+m^2=0有两个实数根x1和x2
3个回答
2013-10-16
展开全部
1。有两个根则有 (2m-1)^2-4m^2>0 解出m<4分之12。x1^2-x2^2=0 则x1和x2相等或互为相反数。相等时,有,x1+x2=2x1=1-m x1乘x2=x1^2=m^2 从而解出m=3分之1或者是-1 互为相反数时,x1+x2=0=1-m x1乘x2=m^2 无解所以m=-1或者3分之1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-16
展开全部
1. △= (2m-1)^2 -4m^2 ≥0即 m≤ 1/4 2. x1^2-x2^2=0即x1= x2 或x1=-x2x1= x2时,即该方程有两个相等实根,即△= 0,此时m=1/4 x1=-x2时, x1+x2= -(2m-1)=0 即m=1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-16
展开全部
x1^2-x2^2=0
(x1+x2)(x1-x2)=0
x1+x2=0或x1-x2=0
x1+x2=0
则由韦达定理
x1+x2=-(2m-1)=0
m=1/2
此时方程是x^2+1/4=0
没有实数解,不成立
x1-x2=0
即方程有两个相同的解
则判别式等于0
(2m-1)^2-4m^2=0
-4m+1=0
m=1/4
所以m=1/4
(x1+x2)(x1-x2)=0
x1+x2=0或x1-x2=0
x1+x2=0
则由韦达定理
x1+x2=-(2m-1)=0
m=1/2
此时方程是x^2+1/4=0
没有实数解,不成立
x1-x2=0
即方程有两个相同的解
则判别式等于0
(2m-1)^2-4m^2=0
-4m+1=0
m=1/4
所以m=1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询