我是高一的学生,现求数学解题方法(抽象函数)。

我是高一的学生,马上要考试了,现在求数学抽象函数的解题方法,或者步骤,请一步一步写好序号,谢谢。有分分的哦。... 我是高一的学生,马上要考试了,现在求数学抽象函数的解题方法,或者步骤,请一步一步写好序号,谢谢。有分分的哦。 展开
 我来答
匿名用户
推荐于2016-10-04
展开全部
抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数,它是中学数学函数部分的难点.因为抽象,学生难以理解,接受困难;因为抽象,教师对教材难以处理,何时讲授,如何讲授,讲授哪些内容,采用什么方式等等,深感茫然无序.其实,大量的抽象函数都是以中学阶段所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“背景”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,常可觅得解题思路,本文就上述问题作一些探讨.

1. 正比例函数型的抽象函数  

例1已知函数f(x)对任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)= -2求f(x)在区间[-2,1]上的值域.

分析:先证明函数f(x)在R上是增函数(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根据区间求其值域.

  

例2已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)= 5,求不等式 f(a2-2a-2)<3的解.

分析:先证明函数f(x)在R上是增函数(仿例1);再求出f(1)=3;最后脱去函数符号.

2. 幂函数型的抽象函数  

例3已知函数f(x)对任意实数x、y都有f(xy)=f(x)f(y),且f(-1)=1,f(27)=9,当0≤x<1时,f(x)∈[0,1].

(1) 判断f(x)的奇偶性;

(2) 判断f(x)在[0,+∞]上的单调性,并给出证明;

(3) 若a≥0且f(a+1)≤     ,求a的取值范围.

分析:(1)令y=-1;

(2)利用f(x1)=f(     ·x2)=f(     )f(x2);

(3)0≤a≤2.
3. 指数函数型的抽象函数 
  
例4设函数f(x)的定义域是(-∞,+∞),满足条件:存在x1≠x2,使得f(x1)≠f(x2);对任何x和y,f(x+y)=f(x)f(y)成立.求:

(1) f(0);

(2) 对任意值x,判断f(x)值的符号.

分析:(1)令y=0;(2)令y=x≠0.

  

例5是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②f(a+b)= f(a)f(b),a、b∈N;③f(2)=4.同时成立?若存在,求出f(x)的解析式,若不存在,说明理由.

分析:先猜出f(x)=2x;再用数学归纳法证明
4. 对数函数型的抽象函数  
例6设f(x)是定义在(0,+∞)上的单调增函数,满足f(x·y)=f(x)+f(y),f(3)=1,求:

(1) f(1);

(2) 若f(x)+f(x-8)≤2,求x的取值范围.

分析:(1)利用3=1×3;

(2)利用函数的单调性和已知关系式.

  

例7设函数y= f(x)的反函数是y=g(x).如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由.

分析:设f(a)=m,f(b)=n,则g(m)=a,g(n)=b,

进而m+n=f(a)+f(b)= f(ab)=f [g(m)g(n)]….

5. 三角函数型的抽象函数  
例8已知函数f(x)的定义域关于原点对称,且满足以下三个条件:

① x1、x2是定义域中的数时,有f(x1-x2)=     ;

② f(a)= -1(a>0,a是定义域中的一个数);

③ 当0<x<2a时,f(x)<0.

试问:

(1) f(x)的奇偶性如何?说明理由;

(2) 在(0,4a)上,f(x)的单调性如何?说明理由.

分析:(1)利用f [-(x1-x2)]= -f [(x1-x2)],判定f(x)是奇函数;

(3) 先证明f(x)在(0,2a)上是增函数,再证明其在(2a,4a)上也是增函数.

对于抽象函数的解答题,虽然不可用特殊模型代替求解,但可用特殊模型理解题意.有些抽象函数问题,对应的特殊模型不是我们熟悉的基本初等函数.因此,针对不同的函数要进行适当变通,去寻求特殊模型,从而更好地解决抽象函数问题.

例9已知函数f(x)(x≠0)满足f(xy)=f(x)+f(y),

(1) 求证:f(1)=f(-1)=0;

(2) 求证:f(x)为偶函数;

(3) 若f(x)在(0,+∞)上是增函数,解不等式f(x)+f(x-     )≤0.

分析:函数模型为:f(x)=loga|x|(a>0)

(1) 先令x=y=1,再令x=y= -1;

(2) 令y= -1;

(3) 由f(x)为偶函数,则f(x)=f(|x|).

  

例10已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)·f(y),且当x<0时,f(x)>1,求证:

(1) 当x>0时,0<f(x)<1;

(2) f(x)在x∈R上是减函数.

分析:(1)先令x=y=0得f(0)=1,再令y=-x;

(3) 受指数函数单调性的启发:

由f(x+y)=f(x)f(y)可得f(x-y)=     ,

进而由x1<x2,有     =f(x1-x2)>1.

总之,因为抽象函数与函数的单调性、奇偶性等众多性质联系紧密,加上本身的抽象性、多变性,所以问题类型众多,解题方法复杂多变.尽管如此,以特殊模型代替抽象函数帮助解题或理解题意,是一种行之有效的教学方法,它能解决中学数学中大多数抽象函数问题.这样做符合学生的年龄特征和认知水平,学生不仅便于理解和接受,感到实在可靠,而且能使学生展开丰富的想象,以解决另外的抽象函数问题.

  

  
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式