函数可导则函数必然连续,但是为什么导函数存在则函数不一定连续?

导函数存在不就是左导数存在,右导数也存在,且二者相等吗。既然左右导数存在,那么不是说明左右可导吗。但是为什么函数不一定连续呢?简单来说就是,函数在点a处导数存在,为什么函... 导函数存在不就是左导数存在,右导数也存在,且二者相等吗。既然左右导数存在,那么不是说明左右可导吗。但是为什么函数不一定连续呢?
简单来说就是,函数在点a处导数存在,为什么函数是不一定连续呢?
求大神指点迷津。
展开
风痕云迹_
推荐于2017-09-25 · TA获得超过5629个赞
知道大有可为答主
回答量:1676
采纳率:100%
帮助的人:935万
展开全部
从你的疑问,感觉你似乎 混淆了 在一点连续或可导 与 在一点的邻域区间连续或可导

如果函数在某点处可导,则一定在此点处连续。
同样, 如果函数在某区间可导,则一定在此区间连续。
但是,如果函数在某点处可导,则不一定在此点的邻域连续。

例如:

当 x为有理数时,f(x) =0
当x为无理数时, f(x)=x^2
可以根据定义验证: 此函数 在x=0处, 连续且可导。但在x=0 的任一邻域都不连续。

“导函数存在则函数不一定连续” 这句不正确。 导函数存在,通常指的是导数在一个区间存在,这样,函数在这个区间也连续。

“函数在点a处导数存在,为什么函数是不一定连续呢?”

函数在a处必连续,但不一定在a的邻域连续。如上例。
心得体会交流铺
2013-10-19 · TA获得超过180个赞
知道答主
回答量:30
采纳率:100%
帮助的人:11.6万
展开全部
导函数存在的意思仅限于左导数存在,右导数存在,而不能说它二者相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2013-10-19
展开全部
分段函数就是特例
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式