
2个回答
展开全部
首先分析f(x)=|2x+a|的单调递增,即随着x的增大,而f(x)=|2x+a|增大,不难得出,x的取值范围为[0,+∞),
又根据若函数f(x)=|2x+a|的单调递增区间是[3,+∞),所以,在x取最小值(0)时,f(x)=|2x+a|=3
所以有f(x)=|2x0+a|=3,a=±3,依题意,舍掉a=-3,(a<0时,f(x)=|2x+a|非单调递增)所以a=3
又根据若函数f(x)=|2x+a|的单调递增区间是[3,+∞),所以,在x取最小值(0)时,f(x)=|2x+a|=3
所以有f(x)=|2x0+a|=3,a=±3,依题意,舍掉a=-3,(a<0时,f(x)=|2x+a|非单调递增)所以a=3

2023-08-25 广告
"整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询