已知A(0 4),P是抛物线Y=x2+1上任意一点,则|PA|的最小值为
展开全部
设P(t,t^2+1),
则|PA|^2=(t-0)^2+(t^2+1-4)^2
=2t^2-6t+9=2(t-3/2)^2+9/2≥9/2,
所以|PA|的最小值为(3√2)/2.
您好,很高兴为您解答,扬海零为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳,手机客户端右上角评价点满意即可。
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
则|PA|^2=(t-0)^2+(t^2+1-4)^2
=2t^2-6t+9=2(t-3/2)^2+9/2≥9/2,
所以|PA|的最小值为(3√2)/2.
您好,很高兴为您解答,扬海零为您答疑解惑
如果本题有什么不明白可以追问,如果满意记得采纳,手机客户端右上角评价点满意即可。
如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
祝学习进步
追问
错了
追答
不好意思
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询