已知二次函数mx^2+(3m-2)x+2m-2=0有一个大于负2的负根,一个小于3的正根,求实数m的取值范围
展开全部
①已知是二次函数,则m≠0
②有两个相异的实数根,则△=(3m-2)^2-4m*(2m-2)>0
===> 9m^2-12m+4-8m^2+8m>0
===> m^2-4m+4>0
===> (m-2)^2>0
===> m≠2
③若m>0,令f(x)=mx^2+(3m-2)x+2m-2;则:
f(-2)>0,且f(0)<0,且f(3)>0
===> 4m-2(3m-2)+2m-2>0,且2m-2<0,且9m+3(3m-2)+2m-2>0
===> 2>0,且m<1,且m>2/5
===> 2/5<m<1
若m<0,则:
f(-2)<0,且f(0)>0,且f(3)<0
===> 4m-2(3m-2)+2m-2<0,且2m-2>0,且9m+3(3m-2)+2m-2<0
===> 2<0——显然不可能
综上:2/5<m<1
②有两个相异的实数根,则△=(3m-2)^2-4m*(2m-2)>0
===> 9m^2-12m+4-8m^2+8m>0
===> m^2-4m+4>0
===> (m-2)^2>0
===> m≠2
③若m>0,令f(x)=mx^2+(3m-2)x+2m-2;则:
f(-2)>0,且f(0)<0,且f(3)>0
===> 4m-2(3m-2)+2m-2>0,且2m-2<0,且9m+3(3m-2)+2m-2>0
===> 2>0,且m<1,且m>2/5
===> 2/5<m<1
若m<0,则:
f(-2)<0,且f(0)>0,且f(3)<0
===> 4m-2(3m-2)+2m-2<0,且2m-2>0,且9m+3(3m-2)+2m-2<0
===> 2<0——显然不可能
综上:2/5<m<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询