二次方程:mx^2+(2m-3)x+4=0只有一个根且这个根小于1,求m的取值范围

 我来答
华源网络
2022-09-02 · TA获得超过5594个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
m=0,显然只有一个根,x=4/3>1, 与条件不符
所以m不等于0
所以,显然方程必须有重根
(2m-3)^2-4*m*4=0
4m^2-28m+9=0
m=(7/2)+(根号10),或m=(7/2)-(根号10)
显然m的这两个值都大于0
而:x1=x2
x1+x2=(3-2m)/m<2
3-2m<2m
m>3/4
而:m=(7/2)-(根号10)<3/4
所以,只有m=(7/2)+(根号10),满足条件
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式