
f(x)=√(x2-2x-2)+√(x2-4x-8)的最小值是。过程,大神不要谦虚啊
1个回答
2013-10-26 · 知道合伙人教育行家
关注

展开全部
妈呀,你这里的x后面的2应该是平方吧。是的话,等会儿。。。
f(x)=√(x²+2x+2)+√(x²-4x+8)
=√[(x+1)²+1]+√[(x-2)²+4]
=√[(x+1)²+(0+1)²]+√[(x-2)²+(0-2)²]
把f(x)放入坐标系中,转化为:
为求点(x,0)到点(-1,-1)与(2,2)的距离之和的最小值
两点之间直线段最短
(-1,-1)与(2,2)两点连线交X轴于(0,0) ,
即x=0时,f(x)最小=√[(-1-2)²+(-1-2)²] =3√2
希望帮得到你\(^o^)/~
f(x)=√(x²+2x+2)+√(x²-4x+8)
=√[(x+1)²+1]+√[(x-2)²+4]
=√[(x+1)²+(0+1)²]+√[(x-2)²+(0-2)²]
把f(x)放入坐标系中,转化为:
为求点(x,0)到点(-1,-1)与(2,2)的距离之和的最小值
两点之间直线段最短
(-1,-1)与(2,2)两点连线交X轴于(0,0) ,
即x=0时,f(x)最小=√[(-1-2)²+(-1-2)²] =3√2
希望帮得到你\(^o^)/~
更多追问追答
追问
不好意思
追答
咋啦。。。。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询