已知关于x的一元二次方程x²+(m+3)X+m+1=0. ⑴求证:无论m去何值,原方程总有两个
已知关于x的一元二次方程x²+(m+3)X+m+1=0.⑴求证:无论m去何值,原方程总有两个不相等的实数根;⑵若x¹,x²是原方程的两根,且...
已知关于x的一元二次方程x²+(m+3)X+m+1=0. ⑴求证:无论m去何值,原方程总有两个不相等的实数根;⑵若x¹,x²是原方程的两根,且|x¹-x²|=2√2,求m的值和此时方程的两根.
展开
2个回答
展开全部
(1)证明:
因为判别式=(m+3)^2-4(m+1)=m^2+2m+5=(m+1)^2+4>0恒成立,
所以:无论m取何值,原方程总有两个不相等的实数根;
⑵因为x¹,x²是原方程的两根,所以:x¹+x²=-(m+3),x¹*x²=m+1,
由|x¹-x²|=2√2,得:(x¹-x²)^2=(x¹+x²)^2-4x¹*x²=8,把x¹+x²=-(m+3),x¹*x²=m+1代入,
得:(m+3)^2-4(m+1)=8,展开、合并得:m^2+2m-3=0,
解得:m=-3或m=1;
若m=-3,则原方程化为:x²-2=0,解得:x1=-√2,x2=√2;
若m=1,则原方程化为:x²+4X+2=0,解得:x1=-2-√2,x2=-2+√2
因为判别式=(m+3)^2-4(m+1)=m^2+2m+5=(m+1)^2+4>0恒成立,
所以:无论m取何值,原方程总有两个不相等的实数根;
⑵因为x¹,x²是原方程的两根,所以:x¹+x²=-(m+3),x¹*x²=m+1,
由|x¹-x²|=2√2,得:(x¹-x²)^2=(x¹+x²)^2-4x¹*x²=8,把x¹+x²=-(m+3),x¹*x²=m+1代入,
得:(m+3)^2-4(m+1)=8,展开、合并得:m^2+2m-3=0,
解得:m=-3或m=1;
若m=-3,则原方程化为:x²-2=0,解得:x1=-√2,x2=√2;
若m=1,则原方程化为:x²+4X+2=0,解得:x1=-2-√2,x2=-2+√2
追问
^ 这是什么
展开全部
(m+3)^2-4(m+1)=m^2+6m+9-4m-4=m^2+2m+5=(m+1)^2+4>0
所以无论m取何值,原方程总有两个不相等的实数根;
(x1-x2)^2=8
(x1+x2)^2-4x1x2=8
(m+3)^2-4(m+1)=8
m^2+6m+9-4m-4=8
m^2+2m-3=0
m=1或m=-3
m=1时x^2+4x+2=0
(x+2)^2-2=0
x=2+√2或x=-2+√2
m=-3时 x^2-2=0
x=√2或x=-√2
所以无论m取何值,原方程总有两个不相等的实数根;
(x1-x2)^2=8
(x1+x2)^2-4x1x2=8
(m+3)^2-4(m+1)=8
m^2+6m+9-4m-4=8
m^2+2m-3=0
m=1或m=-3
m=1时x^2+4x+2=0
(x+2)^2-2=0
x=2+√2或x=-2+√2
m=-3时 x^2-2=0
x=√2或x=-√2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |