高二数学,用正弦或余弦解答,要详细过程。
1个回答
展开全部
1.三角形的内角和为180°,cosC=2√5/5>0,
则C为锐角,则sinC=√(1-(cosC)²)=√(1-(2√5/5)²)=√5/5;
则由正弦定理可知AB/sinC=AC/sinB,
即AB/√5/5=√10/sin45°,则AB=2;
作AE⊥BC于E点,则在RtΔABE中,cosB=cos45°=BE/AB,
则BE=AB×cos45°=2×(√2/2)=√2;
同理在RtΔACE中,cosC=CE/AC,则CE=AC×cosC=√10×(2√5/5)=2√2;
则BC=BE+CE=√2+(2√2)=3√2;
2.连接CD,作DF⊥BC于F点,则DF为RtΔABE的中位线,则DF=BF=AE/2=BE/2=√2/2,
则FE=BE-BF=√2-(√2/2)=√2/2;
则在RtΔCDF中,DF=√2/2,CF=FE+CE=(√2/2)+2√2=5√2/2;
则CD=√((DF)²+(CF)²)=√((√2/2)²+(5√2/2)²)=√13
则C为锐角,则sinC=√(1-(cosC)²)=√(1-(2√5/5)²)=√5/5;
则由正弦定理可知AB/sinC=AC/sinB,
即AB/√5/5=√10/sin45°,则AB=2;
作AE⊥BC于E点,则在RtΔABE中,cosB=cos45°=BE/AB,
则BE=AB×cos45°=2×(√2/2)=√2;
同理在RtΔACE中,cosC=CE/AC,则CE=AC×cosC=√10×(2√5/5)=2√2;
则BC=BE+CE=√2+(2√2)=3√2;
2.连接CD,作DF⊥BC于F点,则DF为RtΔABE的中位线,则DF=BF=AE/2=BE/2=√2/2,
则FE=BE-BF=√2-(√2/2)=√2/2;
则在RtΔCDF中,DF=√2/2,CF=FE+CE=(√2/2)+2√2=5√2/2;
则CD=√((DF)²+(CF)²)=√((√2/2)²+(5√2/2)²)=√13
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询