设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b2=7,a3+b3=16.(1)求{an},{bn}的
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b2=7,a3+b3=16.(1)求{an},{bn}的通项公式;(2)求数列{anbn}...
设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a2+b2=7,a3+b3=16.(1)求{an},{bn}的通项公式;(2)求数列{anbn}的前n项和Sn.
展开
1个回答
展开全部
(1)设{an}的公差为d,{bn}的公比为q
则
,即
<2>-<1>×2得,q2-2q-3=0,即(q-3)(q+1)=0.
∴q=3,q=-1(舍),代入<1>得d=3.
∴an=1+(n?1)?3=3n?2,bn=3n?1
(2)
=
∴Sn=1+
+
+
+…+
①
3Sn=3+4+
+
+…+
②
②-①得2Sn=3+3+
+
+…+
?
=3+3(1+
+
+…+
)?
=3+3?
?
=3+
?(1?
)?
=
?
∴Sn=
?
.
则
|
|
<2>-<1>×2得,q2-2q-3=0,即(q-3)(q+1)=0.
∴q=3,q=-1(舍),代入<1>得d=3.
∴an=1+(n?1)?3=3n?2,bn=3n?1
(2)
an |
bn |
3n?2 |
3n?1 |
∴Sn=1+
4 |
3 |
7 |
32 |
10 |
33 |
3n?2 |
3n?1 |
3Sn=3+4+
7 |
3 |
10 |
32 |
3n?2 |
3n?2 |
②-①得2Sn=3+3+
3 |
3 |
3 |
32 |
3 |
3n?2 |
3n?2 |
3n?1 |
1 |
3 |
1 |
32 |
1 |
3n?2 |
3n?2 |
3n?1 |
=3+3?
1?
| ||
1?
|
3n?2 |
3n?1 |
9 |
2 |
1 |
3n?1 |
3n?2 |
3n?1 |
=
15 |
2 |
6n+5 |
2?3n?1 |
∴Sn=
15 |
4 |
6n+5 |
4?3n?1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询