已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0(1)求证:不论k为何值,方程总有两个不相等的实数根.
已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0(1)求证:不论k为何值,方程总有两个不相等的实数根.(2)k为何值,方程的两根之积等于6.(3)若△AB...
已知关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0(1)求证:不论k为何值,方程总有两个不相等的实数根.(2)k为何值,方程的两根之积等于6.(3)若△ABC的两边AB,AC的长度是该方程的两个根,第三边BC=5,问:k为何值时,△ABC是等腰三角形,并求出此时△ABC的周长.
展开
展开全部
解答:(1)证明:△=(2k+3)2-4(k2+3k+2)
=1,
∵△=1>0,
∴方程有两个不相等的实数根;
(2)解:根据题意得k2+3k+2=6,解得k1=1,k2=-4;
(3)解:由于AB≠AC,则AB=BC=5时,把x=5代入x2-(2k+3)x+k2+3k+2=0得25-5(2k+3)+k2+3k+2=0,解得k1=3,k2=4,
当k=3时,△ABC的周长=5+2k+3=5+6+3=14;当k=4时,△ABC的周长=5+2k+3=5+8+3=16.
=1,
∵△=1>0,
∴方程有两个不相等的实数根;
(2)解:根据题意得k2+3k+2=6,解得k1=1,k2=-4;
(3)解:由于AB≠AC,则AB=BC=5时,把x=5代入x2-(2k+3)x+k2+3k+2=0得25-5(2k+3)+k2+3k+2=0,解得k1=3,k2=4,
当k=3时,△ABC的周长=5+2k+3=5+6+3=14;当k=4时,△ABC的周长=5+2k+3=5+8+3=16.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询